Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Moczydlowski is active.

Publication


Featured researches published by Edward Moczydlowski.


The Journal of Membrane Biology | 1988

An Emerging Pharmacology of Peptide Toxins Targeted Against Potassium Channels

Edward Moczydlowski; Kathryn Lucchesi; Arippa Ravindran

SummaryVoltage-dependent ion channels are a difficult class of proteins to approach biochemically. Many such channels are present at low density in relevant tissues and exist as multiple subtypes that can be distinguished electrophysiologically. In particular, K channels appear to be a diverse family of proteins characterized by many different conductance properties, gating behaviors and regulatory phenomena. Fortunately, specific peptide toxins for K channels are present in the venoms of insects, scorpions, snakes and possibly other species. The available sequences of these peptides define several different families of toxins. Electrophysiological and radioligand binding studies suggest that these toxins can be used to distinguish subclasses of K channels that share similar toxin binding sites. The growing databank of sequence homologies for both toxins and channels is, in essence, a codebook for identifying common elements of structure and function. The continuing development of toxins as biochemical probes should help to uncover the molecular basis and physiological significance of K-channel diversity.


Biophysical Journal | 1996

ON THE STRUCTURAL BASIS FOR IONIC SELECTIVITY AMONG NA+, K+, AND CA2+ IN THE VOLTAGE-GATED SODIUM CHANNEL

I. Favre; Edward Moczydlowski; Laurent Schild

Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.


Journal of Biological Chemistry | 2008

Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.

Yucheng Xiao; Jon-Paul Bingham; Weiguo Zhu; Edward Moczydlowski; Songping Liang; Theodore R. Cummins

Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC50 ∼ 26 nm). Following application of 1 μm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by ∼300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion β-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation

Shumin Bian; Isabelle Favre; Edward Moczydlowski

Mutational and biophysical analysis suggests that an intracellular COOH-terminal domain of the large conductance Ca2+-activated K+ channel (BK channel) contains Ca2+-binding site(s) that are allosterically coupled to channel opening. However the structural basis of Ca2+ binding to BK channels is unknown. To pursue this question, we overexpressed the COOH-terminal 280 residues of the Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His6-tagged protein in Escherichia coli. We purified Dslo-C280 in soluble form and used a 45Ca2+-overlay protein blot assay to detect Ca2+ binding. Dslo-C280 exhibits specific binding of 45Ca2+ in comparison with various control proteins and known EF-hand Ca2+-binding proteins. A mutation (D5N5) of Dslo-C280, in which five consecutive Asp residues of the “Ca-bowl” motif are changed to Asn, reduces 45Ca2+-binding activity by 56%. By electrophysiological assay, the corresponding D5N5 mutant of the Drosophila BK channel expressed in HEK293 cells exhibits lower Ca2+ sensitivity for activation and a shift of ≈+80 mV in the midpoint voltage for activation. This effect is associated with a decrease in the Hill coefficient (N) for activation by Ca2+ and a reduction in apparent Ca2+ affinity, suggesting the loss of one Ca2+-binding site per monomer. These results demonstrate a functional correlation between Ca2+ binding to a specific region of the BK protein and Ca2+-dependent activation, thus providing a biochemical approach to study this process.


Toxicon | 1997

Hypertension and identification of toxin in human urine and serum following a cluster of mussel-associated paralytic shellfish poisoning outbreaks.

Bradford D. Gessner; Peter M. Bell; Gregory J. Doucette; Edward Moczydlowski; Mark Poli; Fran Van Dolah; Sherwood Hall

Following four outbreaks of paralytic shellfish poisoning on Kodiak Island, Alaska, during 1994, medical records of ill persons were reviewed and interviews were conducted. Urine and serum specimens were analyzed at three independent laboratories using four different saxitoxin binding assays. High-performance liquid chromatography was used to determine the presence of specific toxin congeners. Among 11 ill persons, three required mechanical ventilation and one died. Mean peak systolic and diastolic blood pressure measurements were 172 (range 128-247) and 102 (range 78-165) mmHg, respectively, and blood pressure measurements corresponded with ingested toxin dose. All four different laboratory methodologies detected toxin in serum at 2.8-47 nM during acute illness and toxin in urine at 65-372 nM after acute symptom resolution. The composition of specific paralytic shellfish poisons differed between mussels and human biological specimens, suggesting that human metabolism of toxins had occurred. The results of this study indicate that saxitoxin analogues may cause severe hypertension. In addition, we demonstrate that saxitoxins can be detected in human biological specimens, that nanomolar serum toxin levels may cause serious illness and that human metabolism of toxin may occur. Clearance of paralytic shellfish poisons from serum was evident within 24 hr and urine was identified as a major route of toxin excretion in humans.


The Journal of Membrane Biology | 1989

Analysis of the blocking activity of charybdotoxin homologs and iodinated derivatives against Ca2+-Activated K+ channels

Kathryn Lucchesi; Arippa Ravindran; Howard Young; Edward Moczydlowski

SummaryTwo charybdotoxin peptides were purified from venom of the Israeli scorpion,Leiurus quinquestriatus hebraeus. Microsequencing of the most abundant toxin, ChTX-Lq1, revealed identity with the 37-residue peptide previously sequenced by Gimenez-Gallego et al. [Gimenez-Gallego, G., et al.,Proc. Natl. Acad. Sci. USA85:3329–3333 (1988)]. Sequence data on the minor peptide, ChTX-Lq2, showed substantial homology to ChTX-Lq1 with differences observed at eight positions. These two charybdotoxin sequences, along with that of noxiustoxin, define a distinct family of scorpion peptide toxins with activity against K+ channels. Both charybdotoxin homologs inhibited Ca2+-dependent K+ efflux from human erythrocytes with similar potency,K0.5∼-40nm. In planar bilayer assays of single K(Ca) channels from rat muscle, ChTX-Lq1 and ChTX-Lq2 blocked with intrinsicKds of 1.3 and 43nm, respectively, in the presence of 50mm external KCl. A new application of dwell-time histogram analysis of single-channel blocking events was used to characterize the kinetic homogeneity of toxin samples and the blocking kinetics of ChTX derivatives. The lower blocking affinity of ChTX-Lq2 was the combined result of a faster dissociation rate and a slower association rate as compared to ChTX-Lq1. The blocking activity of two mono-iodinated derivatives of ChTX-Lq1 was also analyzed. Blocked dwell-time histograms of the iodinated peptides were characterized by predominately brief (0.2–2 sec) blocking events in comparison to the native toxin (20 sec). Histogram analysis revealed that mono-iodination of ChTX-Lq1 impairs blocking activity by adverse effects on both dissociation and association rate constants. Frequency density histograms of single channel blocking events provide a sensitive assay of toxin purity suitable for quantitating structure-activity relationships of charybdotoxin derivatives.


Biophysical Journal | 2001

Cytoplasmic Polyamines as Permeant Blockers and Modulators of the Voltage-Gated Sodium Channel

Chien-Jung Huang; Edward Moczydlowski

We report that voltage-gated Na+ channels (Na(V)) from rat muscle (mu1) expressed in HEK293 cells exhibit anomalous rectification of whole-cell outward current under conditions of symmetrical Na+. This behavior gradually fades with time after membrane break-in, as if a diffusible blocking substance in the cytoplasm is slowly diluted by the pipette solution. The degree of such block and rectification is markedly altered by various mutations of the conserved Lys(III) residue in Domain III of the Na(V) channel selectivity filter (DEKA locus), a principal determinant of inorganic ion selectivity and organic cation permeation. Using whole-cell and macropatch recording techniques, we show that two ubiquitous polyamines, spermine and spermidine, are potent voltage-dependent cytoplasmic blockers of mu1 Na(V) current that exhibit relief of block at high positive voltage, a phenomenon that is also enhanced by certain mutations of the Lys(III) residue. In addition, we find that polyamines alter the apparent rate of macroscopic inactivation and exhibit a use-dependent blocking phenomenon reminiscent of the action of local anesthetics. In the presence of a physiological Na+/K+ gradient, spermine also inhibits inward Na(V) current and shifts the voltage dependence of activation and inactivation. Similarities between the endogenous blocking phenomenon observed in whole cells and polyamine block characterized in excised patches suggest that polyamines or related metabolites may function as endogenous modulators of Na(V) channel activity.


The Journal of General Physiology | 2004

Block of inactivation-deficient Na+ channels by local anesthetics in stably transfected mammalian cells: evidence for drug binding along the activation pathway.

Sho-Ya Wang; Jane Mitchell; Edward Moczydlowski; Ging Kuo Wang

According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na+ channels with higher affinities. However, an alternative view suggests that activation of Na+ channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in LA action in inactivation-deficient rat muscle Na+ channels (rNav1.4-L435W/L437C/A438W) expressed in stably transfected Hek293 cells. The 50% inhibitory concentrations (IC50) for the open-channel block at +30 mV by lidocaine and benzocaine were 20.9 ± 3.3 μM (n = 5) and 81.7 ± 10.6 μM (n = 5), respectively; both were comparable to inactivated-channel affinities. In comparison, IC50 values for resting-channel block at −140 mV were >12-fold higher than those for open-channel block. With 300 μM benzocaine, rapid time-dependent block (τ ≈ 0.8 ms) of inactivation-deficient Na+ currents occurred at +30 mV, but such a rapid time-dependent block was not evident at −30 mV. The peak current at −30 mV, however, was reduced more severely than that at +30 mV. This phenomenon suggested that the LA block of intermediate closed states took place notably when channel activation was slow. Such closed-channel block also readily accounted for the LA-induced hyperpolarizing shift in the conventional steady-state inactivation measurement. Our data together illustrate that the Na+ channel activation pathway, including most, if not all, transient intermediate closed states and the final open state, promotes high-affinity LA binding.


The Journal of General Physiology | 2003

Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: re-examination of the surface charge hypothesis.

Jin Bong Park; Hee Jeong Kim; Pan Dong Ryu; Edward Moczydlowski

Incorporation of BK Ca2+–activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273–282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 Å) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms for the effect of anionic lipids in the context of specific molecular interactions of phospholipids documented for the KcsA bacterial potassium channel and general membrane physical properties proposed to regulate membrane protein conformation via energetics of bilayer stress.


Biophysical Journal | 1991

Competitive binding interaction between Zn2+ and saxitoxin in cardiac Na+ channels. Evidence for a sulfhydryl group in the Zn2+/saxitoxin binding site

Laurent Schild; Edward Moczydlowski

Mammalian heart Na+ channels exhibit approximately 100-fold higher affinity for block by external Zn2+ than other Na+ channel subtypes. With batrachotoxin-modified Na+ channels from dog or calf heart, micromolar concentrations of external Zn2+ result in a flickering block to a substate level with a conductance of approximately 12% of the open channel at -50 mV. We examined the hypothesis that, in this blocking mode, Zn2+ binds to a subsite of the saxitoxin (STX) binding site of heart Na+ channels by single-channel analysis of the interaction between Zn2+ and STX and also by chemical modification experiments on single heart Na+ channels incorporated into planar lipid bilayers in the presence of batrachotoxin. We found that external Zn2+ relieved block by STX in a strictly competitive fashion. Kinetic analysis of this phenomenon was consistent with a scheme involving direct binding competition between Zn2+ and STX at a single site with intrinsic equilibrium dissociation constants of 30 nM for STX and 30 microM for Zn2+. Because high-affinity Zn2(+)-binding sites often include sulfhydryl groups as coordinating ligands of this metal ion, we tested the effect of a sulfhydryl-specific alkylating reagent, iodoacetamide (IAA), on Zn2+ and STX block. For six calf heart Na+ channels, we observed that exposure to 5 mM IAA completely abolished Zn2+ block and concomitantly modified STX binding with at least 20-fold reduction in affinity. These results lead us to propose a model in which Zn2+ binds to a subsite within or near the STX binding site of heart Na+ channels. This site is also presumed to contain one or more cysteine sulfhydryl groups.

Collaboration


Dive into the Edward Moczydlowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon-Paul Bingham

College of Tropical Agriculture and Human Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherwood Hall

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge