Edward Montiel
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward Montiel.
Science | 2011
Mikako Matsuura; Eli Dwek; Margaret M. Meixner; Masaaki Otsuka; B. L. Babler; M. J. Barlow; Julia Roman-Duval; C. W. Engelbracht; Karin Sandstrom; M. Lakićević; J. Th. van Loon; George Sonneborn; Geoffrey C. Clayton; Knox S. Long; Peter Lundqvist; Takaya Nozawa; Karl D. Gordon; S. Hony; P. Panuzzo; K. Okumura; Karl Anthony Misselt; Edward Montiel; M. Sauvage
The large amount of dust produced by this supernova may help explain the dust observed in young galaxies. We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.
The Astrophysical Journal | 2013
Karin Sandstrom; Adam K. Leroy; F. Walter; Alberto D. Bolatto; K. V. Croxall; B. T. Draine; C. D. Wilson; Mark G. Wolfire; D. Calzetti; Robert C. Kennicutt; G. Aniano; J. Donovan Meyer; A. Usero; Frank Bigiel; Elias Brinks; W. J. G. de Blok; Alison F. Crocker; Daniel A. Dale; C. W. Engelbracht; M. Galametz; Brent Groves; L. K. Hunt; Jin Koda; K. Kreckel; H. Linz; Sharon E. Meidt; E. Pellegrini; Hans-Walter Rix; H. Roussel; E. Schinnerer
We present ~kiloparsec spatial resolution maps of the CO-to-H_2 conversion factor (α_(CO)) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α_(CO) and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both αCO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, ^(12)CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α_(CO) results on the more typically used ^(12)CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α_(CO) and the DGR. On average, α_(CO) = 3.1 M_☉ pc^(–2) (K km s^(–1))^(–1) for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α_(CO) as a function of galactocentric radius. However, most galaxies exhibit a lower α_(CO) value in the central kiloparsec—a factor of ~2 below the galaxy mean, on average. In some cases, the central α_(CO) value can be factors of 5-10 below the standard Milky Way (MW) value of α_(CO,MW) = 4.4 M_☉ pc^(–2) (K km s^(–1))^(–1). While for α_(CO) we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α_(CO) for studies of nearby galaxies.
Publications of the Astronomical Society of the Pacific | 2011
Robert C. Kennicutt; D. Calzetti; G. Aniano; P. N. Appleton; Lee Armus; P. Beirão; Alberto D. Bolatto; Bernhard R. Brandl; Alison F. Crocker; K. V. Croxall; Daniel A. Dale; J. Dononvan Meyer; B. T. Draine; C. W. Engelbracht; M. Galametz; Karl D. Gordon; Brent Groves; Cai-Na Hao; G. Helou; Joannah L. Hinz; L. K. Hunt; Barbara Johnson; Jin Koda; Oliver Krause; Adam K. Leroy; Yuejin Li; Sharon E. Meidt; Edward Montiel; E. J. Murphy; Nurur Rahman
The KINGFISH project (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) is an imaging and spectroscopic survey of 61 nearby (d < 30 Mpc) galaxies, chosen to cover a wide range of galaxy properties and local interstellar medium (ISM) environments found in the nearby universe. Its broad goals are to characterize the ISM of present-day galaxies, the heating and cooling of their gaseous and dust components, and to better understand the physical processes linking star formation and the ISM. KINGFISH is a direct descendant of the Spitzer Infrared Nearby Galaxies Survey (SINGS), which produced complete Spitzer imaging and spectroscopic mapping and a comprehensive set of multiwavelength ancillary observations for the sample. The Herschel imaging consists of complete maps for the galaxies at 70, 100, 160, 250, 350, and 500 μm. The spectral line imaging of the principal atomic ISM cooling lines ([O I] 63 μm, [O III] 88 μm, [N II] 122,205 μm, and [C II] 158 μm) covers the subregions in the centers and disks that already have been mapped in the mid-infrared with Spitzer. The KINGFISH and SINGS multiwavelength data sets combined provide panchromatic mapping of the galaxies sufficient to resolve individual star-forming regions, and tracing the important heating and cooling channels of the ISM, across a wide range of local extragalactic ISM environments. This article summarizes the scientific strategy for KINGFISH, the properties of the galaxy sample, the observing strategy, and data processing and products. It also presents a combined Spitzer and Herschel image atlas for the KINGFISH galaxies, covering the wavelength range 3.6–500 μm. All imaging and spectroscopy data products will be released to the Herschel user-generated product archives.
The Astrophysical Journal | 2012
Daniel A. Dale; G. Aniano; C. W. Engelbracht; Joannah L. Hinz; O. Krause; Edward Montiel; H. Roussel; P. N. Appleton; Lee Armus; P. Beirão; Alberto D. Bolatto; Bernhard R. Brandl; Daniela Calzetti; Alison F. Crocker; K. F. Croxall; B. T. Draine; M. Galametz; Karl D. Gordon; Brent Groves; Cai-Na Hao; G. Helou; L. K. Hunt; Benjamin D. Johnson; Robert C. Kennicutt; Jin Koda; Adam K. Leroy; Yiming Li; Sharon E. Meidt; A. E. Miller; E. J. Murphy
New far-infrared and submillimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500 μm emission shows evidence for a submillimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photodissociation regions is found to be (21 ± 4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.
Astronomy and Astrophysics | 2011
F. Galliano; S. Hony; J.-P. Bernard; Caroline Bot; S. Madden; Julia Roman-Duval; M. Galametz; Aigen Li; Margaret M. Meixner; C. W. Engelbracht; V. Lebouteiller; Karl Anthony Misselt; Edward Montiel; P. Panuzzo; William T. Reach; Ramin A. Skibba
Context. Herschel provides crucial constraints on the IR SEDs of galaxies, allowing unprecedented accuracy on the dust mass estimates. However, these estimates rely on non-linear models and poorly-known optical properties. Aims. In this paper, we perform detailed modelling of the Spitzer and Herschel observations of the LMC, in order to: (i) systematically study the uncertainties and biases affecting dust mass estimates; and to (ii) explore the peculiar ISM properties of the LMC. Methods. To achieve these goals, we have modelled the spatially resolved SEDs with two alternate grain compositions, to study the impact of different submillimetre opacities on the dust mass. We have rigorously propagated the observational errors (noise and calibration) through the entire fitting process, in order to derive consistent parameter uncertainties. Results. First, we show that using the integrated SED leads to underestimating the dust mass by ≃50% compared to the value obtained with sufficient spatial resolution, for the region we studied. This might be the case, in general, for unresolved galaxies. Second, we show that Milky Way type grains produce higher gas-to-dust mass ratios than what seems possible according to the element abundances in the LMC. A spatial analysis shows that this dilemma is the result of an exceptional property: the grains of the LMC have on average a larger intrinsic submm opacity (emissivity index β ≃ 1.7 and opacity κ_(abs)(160 μm) = 1.6 m^2 kg^(-1)) than those of the Galaxy. By studying the spatial distribution of the gas-to-dust mass ratio, we are able to constrain the fraction of unseen gas mass between ≃10, and ≃100% and show that it is not sufficient to explain the gas-to-dust mass ratio obtained with Milky Way type grains. Finally, we confirm the detection of a 500 μm extended emission excess with an average relative amplitude of ≃15%, varying up to 40%. This excess anticorrelates well with the dust mass surface density. Although we do not know the origin of this excess, we show that it is unlikely the result of very cold dust, or CMB fluctuations.
The Astrophysical Journal | 2011
Ramin A. Skibba; C. W. Engelbracht; Daniel A. Dale; Joannah L. Hinz; Stefano Zibetti; Alison F. Crocker; Brent Groves; L. K. Hunt; Benjamin D. Johnson; Sharon E. Meidt; E. J. Murphy; Philip N. Appleton; Lee Armus; Alberto D. Bolatto; Bernhard R. Brandl; Daniela Calzetti; Kevin V. Croxall; M. Galametz; Karl D. Gordon; Robert C. Kennicutt; Jin Koda; O. Krause; Edward Montiel; Hans-Walter Rix; Helene Roussel; Karin Sandstrom; M. Sauvage; E. Schinnerer; J. D. Smith; Fabian Walter
Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet (UV) to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades (from 10^(−2.2) to 10^(0.5)). The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low by 17% on average. We find that the dust/stellar flux ratio varies with morphology and total infrared (IR) luminosity, with dwarf galaxies having faint luminosities, spirals having relatively high dust/stellar ratios and IR luminosities, and some early types having low dust/stellar ratios. We also find that dust/stellar flux ratios are related to gas-phase metallicity (log(f_(dust)/f_∗) = −0.66 ± 0.08 and −0.22 ± 0.12 for metal-poor and intermediate-metallicity galaxies, respectively), while the dust/stellar mass ratios are less so (differing by ≈0.2 dex); the more metal-rich galaxies span a much wider range of the flux ratios. In addition, the substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we also show that early types tend to have slightly warmer temperatures (by up to 5 K) than spiral galaxies, which may be due to more intense interstellar radiation fields, or possibly to different dust grain compositions. Finally, we show that early types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing (if limited) star formation as well as to the radiation field from older stars, which is heating the dust grains.
The Astrophysical Journal | 2014
Karl D. Gordon; Julia Roman-Duval; Caroline Bot; Margaret M. Meixner; B. L. Babler; J.-P. Bernard; Alberto D. Bolatto; Martha L. Boyer; Geoffrey C. Clayton; C. W. Engelbracht; Yasuo Fukui; M. Galametz; F. Galliano; Sacha Hony; Annie Hughes; Remy Indebetouw; F. P. Israel; Katherine Jameson; Akiko Kawamura; V. Lebouteiller; Aigen Li; S. Madden; Mikako Matsuura; Karl Anthony Misselt; Edward Montiel; K. Okumura; Toshikazu Onishi; P. Panuzzo; D. Paradis; M. Rubio
The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 105 and (8.3 ± 2.1) × 104 M ☉ for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.
The Astronomical Journal | 2013
Margaret Meixner; P. Panuzzo; Julia Roman-Duval; C. W. Engelbracht; B. L. Babler; Jonathan P. Seale; S. Hony; Edward Montiel; M. Sauvage; Karl D. Gordon; Karl Anthony Misselt; K. Okumura; P. Chanial; Tracy L. Beck; J.-P. Bernard; Alberto D. Bolatto; Caroline Bot; Martha L. Boyer; Lynn Redding Carlson; Geoffrey C. Clayton; C.-H. R. Chen; D. Cormier; Yasuo Fukui; M. Galametz; F. Galliano; Joseph L. Hora; Annie Hughes; Remy Indebetouw; F. P. Israel; Akiko Kawamura
We present an overview of the HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) in the Magellanic Clouds project, which is a Herschel Space Observatory open time key program. We mapped the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) at 100, 160, 250, 350, and 500 μm with the Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments on board Herschel using the SPIRE/PACS parallel mode. The overriding science goal of HERITAGE is to study the life cycle of matter as traced by dust in the LMC and SMC. The far-infrared and submillimeter emission is an effective tracer of the interstellar medium (ISM) dust, the most deeply embedded young stellar objects (YSOs), and the dust ejected by the most massive stars. We describe in detail the data processing, particularly for the PACS data, which required some custom steps because of the large angular extent of a single observational unit and overall the large amount of data to be processed as an ensemble. We report total global fluxes for the LMC and SMC and demonstrate their agreement with measurements by prior missions. The HERITAGE maps of the LMC and SMC are dominated by the ISM dust emission and bear most resemblance to the tracers of ISM gas rather than the stellar content of the galaxies. We describe the point source extraction processing and the criteria used to establish a catalog for each waveband for the HERITAGE program. The 250 μm band is the most sensitive and the source catalogs for this band have ~25,000 objects for the LMC and ~5500 objects for the SMC. These data enable studies of ISM dust properties, submillimeter excess dust emission, dust-to-gas ratio, Class 0 YSO candidates, dusty massive evolved stars, supernova remnants (including SN1987A), H II regions, and dust evolution in the LMC and SMC. All images and catalogs are delivered to the Herschel Science Center as part of the community support aspects of the project. These HERITAGE images and catalogs provide an excellent basis for future research and follow up with other facilities.
The Astrophysical Journal | 2013
Nicholas P. Ballering; G. H. Rieke; Kate Y. L. Su; Edward Montiel
Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.
Astronomy and Astrophysics | 2013
F. S. Tabatabaei; E. Schinnerer; E. J. Murphy; R. Beck; Brent Groves; Sharon E. Meidt; Marita Krause; H.-W. Rix; Karin Sandstrom; Alison F. Crocker; M. Galametz; G. Helou; C. D. Wilson; Robert C. Kennicutt; D. Calzetti; B. T. Draine; G. Aniano; Daniel A. Dale; Gaelle Dumas; C. W. Engelbracht; Karl D. Gordon; Joannah L. Hinz; K. Kreckel; Edward Montiel; H. Roussel
We derive the distribution of the synchrotron spectral index across NGC 6946 and investigate the correlation between the radio continuum (synchrotron) and far-infrared (FIR) emission using the KINGFISH Herschel-PACS and SPIRE data. The radio-FIR correlation is studied as a function of star formation rate, magnetic field strength, radiation field strength, and the total gas surface density. The synchrotron emission follows both star-forming regions and the so-called magnetic arms present in the inter-arm regions. The synchrotron spectral index is steepest along the magnetic arms (α_n ~ 1), while it is flat in places of giant Hii regions and in the center of the galaxy (α_n ~ 0.6−0.7). The map of α_n provides observational evidence for aging and energy loss of cosmic ray electrons (CREs) propagating in the disk of the galaxy. Variations in the synchrotron-FIR correlation across the galaxy are shown to be a function of both star formation and magnetic field strength. We find that the synchrotron emission correlates better with cold rather than with warm dust emission, when the diffuse interstellar radiation field is the main heating source of dust. The synchrotron-FIR correlation suggests a coupling between the magnetic field and the gas density. NGC 6946 shows a power-law behavior between the total (turbulent) magnetic field strength B and the star formation rate surface density Σ_(SFR) with an index of 0.14 (0.16) ± 0.01. This indicates an efficient production of the turbulent magnetic field with the increasing gas turbulence expected in actively star forming regions. Moreover, it is suggested that the B-Σ_(SFR) power law index is similar for the turbulent and the total fields in normal galaxies. On the other hand, for galaxies interacting with the cluster environment this index is steeper for turbulent magnetic fields than it is for the total magnetic fields. The scale-by-scale analysis of the synchrotron-FIR correlation indicates that the ISM affects the propagation of old/diffused CREs, resulting in a diffusion coefficient of D_0 = 4.6 × 10^(28) cm^2 s^(-1) for 2.2 GeV CREs.