Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward N. Harris is active.

Publication


Featured researches published by Edward N. Harris.


Nature Chemical Biology | 2014

Homogeneous low-molecular-weight heparins with reversible anticoagulant activity

Yongmei Xu; Chao Cai; Kasemsiri Chandarajoti; Po Hung Hsieh; Lingyun Li; Truong Quang Pham; Erica M. Sparkenbaugh; Juzheng Sheng; Nigel S. Key; Rafal Pawlinski; Edward N. Harris; Robert J. Linhardt; Jian Liu

Low-molecular-weight heparins (LMWHs) are carbohydrate-based anticoagulants clinically used to treat thrombotic disorders, but impurities, structural heterogeneity or functional irreversibility can limit treatment options. We report a series of synthetic LMWHs prepared by cost-effective chemoenzymatic methods. The high activity of one defined synthetic LMWH against human factor Xa (FXa) was reversible in vitro and in vivo using protamine, demonstrating that synthetically accessible constructs can have a critical role in the next generation of LMWHs.


Journal of Biological Chemistry | 2013

The hyaluronan receptor for endocytosis (HARE) activates NF-κB-mediated gene expression in response to 40-400-kDa, but not smaller or larger, hyaluronans.

Madhu S. Pandey; Bruce A. Baggenstoss; Jennifer L Washburn; Edward N. Harris; Paul H. Weigel

Background: HARE mediates systemic clearance of hyaluronan (HA), which turns over continuously in tissues. Results: HARE uptake of 40–400-kDa, but not larger or smaller, HA stimulated NF-κB activation. Conclusion: HA-HARE signal complexes activate NF-κB and gene transcription only with optimally sized HA. Significance: HARE responsiveness to a narrow size range of HA degradation products may be a sensing system to detect tissue ECM stress. The hyaluronan (HA) receptor for endocytosis (HARE; Stabilin-2) binds and clears 14 different ligands, including HA and heparin, via clathrin-mediated endocytosis. HA binding to HARE stimulates ERK1/2 activation (Kyosseva, S. V., Harris, E. N., and Weigel, P. H. (2008) J. Biol. Chem. 283, 15047–15055). To assess a possible HA size dependence for signaling, we tested purified HA fractions of different weight-average molar mass and with narrow size distributions and Select-HATM for stimulation of HARE-mediated gene expression using an NF-κB promoter-driven luciferase reporter system. Human HARE-mediated gene expression was stimulated in a dose-dependent manner with small HA (sHA) >40 kDa and intermediate HA (iHA) <400 kDa. The hyperbolic dose response saturated at 20–50 nm with an apparent Km ∼10 nm, identical to the Kd for HA-HARE binding. Activation was not detected with oligomeric HA (oHA), sHA <40 kDa, iHA >400 kDa, or large HA (lHA). Similar responses occurred with rat HARE. Activation by sHA-iHA was blocked by excess nonsignaling sHA, iHA, or lHA, deletion of the HA-binding LINK domain, or HA-blocking antibody. Endogenous NF-κB activation also occurred in the absence of luciferase plasmids, as assessed by degradation of IκB-α. ERK1/2 activation was also HA size-dependent. The results show that HA-HARE interactions stimulate NF-κB-activated gene expression and that HARE senses a narrow size range of HA degradation products. We propose a model in which optimal length HA binds multiple HARE proteins to allow cytoplasmic domain interactions that stimulate intracellular signaling. This HARE signaling system during continuous HA clearance could monitor the homeostasis of tissue biomatrix turnover throughout the body.


Nucleic Acids Research | 2016

Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

Colton M. Miller; Aaron J. Donner; Emma E. Blank; Andrew W. Egger; Brianna M. Kellar; Michael E. Østergaard; Punit P. Seth; Edward N. Harris

Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties.


Applied and Environmental Microbiology | 2015

In Vivo Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications

Janina A. Krumbeck; María X. Maldonado-Gómez; Inés Martínez; Steven A. Frese; Thomas E. Burkey; Karuna Rasineni; Amanda E. Ramer-Tait; Edward N. Harris; Robert W. Hutkins; Jens Walter

ABSTRACT One strategy for enhancing the establishment of probiotic bacteria in the human intestinal tract is via the parallel administration of a prebiotic, which is referred to as a synbiotic. Here we present a novel method that allows a rational selection of putative probiotic strains to be used in synbiotic applications: in vivo selection (IVS). This method consists of isolating candidate probiotic strains from fecal samples following enrichment with the respective prebiotic. To test the potential of IVS, we isolated bifidobacteria from human subjects who consumed increasing doses of galactooligosaccharides (GOS) for 9 weeks. A retrospective analysis of the fecal microbiota of one subject revealed an 8-fold enrichment in Bifidobacterium adolescentis strain IVS-1 during GOS administration. The functionality of GOS to support the establishment of IVS-1 in the gastrointestinal tract was then evaluated in rats administered the bacterial strain alone, the prebiotic alone, or the synbiotic combination. Strain-specific quantitative real-time PCR showed that the addition of GOS increased B. adolescentis IVS-1 abundance in the distal intestine by nearly 2 logs compared to rats receiving only the probiotic. Illumina 16S rRNA sequencing not only confirmed the increased establishment of IVS-1 in the intestine but also revealed that the strain was able to outcompete the resident Bifidobacterium population when provided with GOS. In conclusion, this study demonstrated that IVS can be used to successfully formulate a synergistic synbiotic that can substantially enhance the establishment and competitiveness of a putative probiotic strain in the gastrointestinal tract.


Journal of Biological Chemistry | 2012

Probing Structural Selectivity of Synthetic Heparin Binding to Stabilin Protein Receptors

Elizabeth H. Pempe; Yongmei Xu; Sandhya Gopalakrishnan; Jian Liu; Edward N. Harris

Background: Stabilin-2 is expressed in the liver endothelium and serves as the primary heparin clearance receptor in mammals. Results: Increased sulfation and length of heparin increase affinity for Stabilin binding/endocytosis. Conclusion: The data demonstrate that 3-O-sulfation is not required, but greatly enhances binding to the Stabilin receptors. Significance: Customized heparin may have therapeutic applications for obtaining the optimal balance between anticoagulation and clearance. As one of the most widely used drugs worldwide, heparin is an essential anticoagulant required for surgery, dialysis, treatment of thrombosis, cancer, and general circulatory management. Stabilin-2 is a scavenger clearance receptor with high expression in the sinusoidal endothelium of liver. It is believed that Stabilin-2 is the primary receptor for the clearance of unfractionated and low molecular weight heparins in the liver. Here, we identify the modifications and length of the heparin polymer that are required for binding and endocytosis by both human Stabilin receptors: Stabilin-2 and its homolog Stabilin-1 (also found in liver endothelium). Using enzymatically synthesized 35S-labeled heparan sulfate oligomers, we identified that sulfation of the 3-OH position of N-sulfated glucosamine (GlcNS) is the most beneficial modification for binding and endocytosis via both Stabilin receptors. In addition, our data suggest that a decasaccharide is the minimal size for binding to the Stabilin receptors. These findings define the physical parameters of the heparin structure required for efficient clearance from blood circulation. These results will also aid in the design of synthetic heparins with desired clearance rates.


Journal of Visualized Experiments | 2011

In vivo Liver Endocytosis Followed by Purification of Liver Cells by Liver Perfusion

Sandhya Gopalakrishnan; Edward N. Harris

The liver is the metabolic center of the mammalian body and serves as a filter for the blood. The basic architecture of the liver is illustrated in figure 1 in which more than 85% of the liver mass is composed of hepatocytes and the remaining 15% of the cellular mass is composed of Kupffer cells (KCs), stellate cells (HSCs), and sinusoidal endothelial cells (SECs). SECs form the blood vessel walls within the liver and contain specialized morphology called fenestrae within in the cytoplasm. Fenestration of the cytoplasm is the appearance of holes (˜100 μm) within the cells so that the SECs act as a sieve in which most chylomicrons, chylomicron remnants and macromolecules, but not cells, pass through to the hepatocytes and HSCs 1 (Fig. 1). Due to the lack of a basement membrane, the gap between the SECs and hepatocytes form the Space of Disse. HSCs occupy this space and play a prominent role in regulation and response to injury, storage of retinoic acid and immunoregulation of the liver 2. SECs are among the most endocytically active cells of the body displaying an array of scavenger receptors on their cell surface 3. These include SR-A, Stabilin-1 and Stabilin-2. Generally, small colloidal particles less than 230 nm and macromolecules in buffer phase are taken up by SECs, whereas, large particles and cellular debris is endocytosed (phagocytosed) by KCs 4. Thus, the bulk clearance of extracellular material such as the glycosaminoglycans from blood is largely dependent on the health and endocytic functions of SECs 5,6. For example, an increase in blood hyaluronan levels is indicative of liver disease ranging from mild to more severe forms 7. With the exception of one report 8, there are no immortalized SEC cell lines in existence. Even this immortalized cell line is de-differentiated in that it does not express scavenger receptors that are present on primary SECs (our data, not shown). All cell biological studies must be performed on primary cells obtained freshly from the animal. Unfortunately, SECs dedifferentiate under standard culture conditions and must be used within 1 or 2 days upon isolation from the animal. Differentiation of SECs is marked by the expression of Stabilin-2 or HARE receptor 9 , CD31, and the presence of cytoplasmic fenestration 1. Differentiation of SECs can be extended by the addition of VEGF in culture media or by culturing cells in hepatocyte conditioned medium 10,11. In this report, we will demonstrate the endocytic activity of SECs in the intact organ using radio-labeled heparin for hyaluronan for the SEC-specific Stabilin-2 receptor. We will then purify hepatocytes and SECs from the perfused liver to measure endocytosis.


ACS Chemical Biology | 2016

Interrogating Endogenous Protein Phosphatase Activity with Rationally Designed Chemosensors.

Jon R. Beck; Antoneal Lawrence; Amar S. Tung; Edward N. Harris; Cliff I. Stains

We introduce a versatile approach for repurposing protein kinase chemosensors, containing the phosphorylation-sensitive sulfonamido-oxine fluorophore termed Sox, for the specific determination of endogenous protein phosphatase activity from whole cell lysates and tissue homogenates. As a demonstration of this approach, we design and evaluate a direct chemosensor for protein tyrosine phosphatase-1B (PTP1B), an established signaling node in human disease. The optimal sensor design is capable of detecting as little as 6 pM (12 pg) full-length recombinant PTP1B and is remarkably selective for PTP1B among a panel of highly homologous tyrosine phosphatases. Coupling this robust activity probe with the specificity of antibodies allowed for the temporal analysis of endogenous PTP1B activity dynamics in lysates generated from HepG2 cells after stimulation with insulin. Lastly, we leveraged this assay format to profile PTP1B activity perturbations in a rat model of nonalcoholic fatty liver disease (NAFLD), providing direct evidence for elevated PTP1B catalytic activity in this disease state. Given the modular nature of this assay, we anticipate that this approach will have broad utility in monitoring phosphatase activity dynamics in human disease states.


BioMed Research International | 2017

SECs (Sinusoidal Endothelial Cells), Liver Microenvironment,and Fibrosis

Vaishaali Natarajan; Edward N. Harris; Srivatsan Kidambi

Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis.


Journal of Clinical Investigation | 2018

A TLR/AKT/FoxO3 immune tolerance–like pathway disrupts the repair capacity of oligodendrocyte progenitors

Taasin Srivastava; Parham Diba; Justin Dean; Fatima Banine; Daniel Shaver; Matthew Hagen; Xi Gong; Weiping Su; Ben Emery; Daniel L. Marks; Edward N. Harris; Bruce Baggenstoss; Paul H. Weigel; Larry S. Sherman; Stephen A. Back

Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance–like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.


Biochemical and Biophysical Research Communications | 2015

Tissue-specific splice variants of HARE/Stabilin-2 are expressed in bone marrow, lymph node, and spleen.

Amanda K. Hare; Edward N. Harris

The hyaluronan receptor for endocytosis (HARE), or Stabilin-2, is the mammalian endocytic clearance receptor for HA, heparin, advanced glycation end-products, acetylated and oxidized low-density lipoproteins and collagen N-terminal propeptides. This large 2551 amino acid receptor is encoded by a gene that covers over 180 kbp on human chromosome 12 and is predicted to be composed of 69 exons. Due to the expression profile of this gene and the number of exons it contains, we hypothesized that splice variants of stab2 are encoded in these tissues. In addition, a correlation between alternative splice variants and cancer progression has been shown in other HA receptors such as RHAMM and CD42. In this study, two methods were utilized in identifying and/or isolating the HARE splice variants. The first method used primer sets to amplify the 190-HARE encoding region that could contain splice junctions; therefore, they were purified from agarose gels and sequenced. Five splice variants were detected in that manner. In the second approach, the entire open reading frame of HARE was amplified. This allowed four splice variants with extensive exon splicing to be isolated. After the splice variants were sequenced, three were cloned into a mammalian expression vector. Next, stable cell lines expressing the variants were created in order to determine stable protein expression. In this study, the splice variants were found to be tissue specific in most cases. This suggests that tissue specific regulatory splicing mechanisms may lead to differences in functionality between the splice variants.

Collaboration


Dive into the Edward N. Harris's collaboration.

Top Co-Authors

Avatar

Colton M. Miller

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jian Liu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yongmei Xu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Linhardt

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew W. Egger

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Brianna M. Kellar

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Carol A. Casey

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cliff I. Stains

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jon R. Beck

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge