Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Ojuka is active.

Publication


Featured researches published by Edward Ojuka.


Proceedings of the Nutrition Society | 2004

Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle.

Edward Ojuka

Contractile activity induces mitochondrial biogenesis and increases glucose transport capacity in muscle. There has been much research on the mechanisms responsible for these adaptations. The present paper reviews the evidence, which indicates that the decrease in the levels of high-energy phosphates, leading to activation of AMP kinase (AMPK), and the increase in cytosolic Ca(2+), which activates Ca(2+)/calmodulin-dependent protein kinase (CAMK), are signals that initiate these adaptative responses. Although the events downstream of AMPK and CAMK have not been well characterized, these events lead to activation of various transcription factors, including: nuclear respiratory factors (NRF) 1 and 2, which cause increased expression of proteins of the respiratory chain; PPAR-alpha, which up regulates the levels of enzymes of beta oxidation; mitochondrial transcription factor A, which activates expression of the mitochondrial genome; myocyte-enhancing factor 2A, the transcription factor that regulates GLUT4 expression. The well-orchestrated expression of the multitude of proteins involved in these adaptations is mediated by the rapid activation of PPAR gamma co-activator (PGC) 1, a protein that binds to various transcription factors to maximize transcriptional activity. Activating AMPK using 5-aminoimidizole-4-carboxamide-1-beta-D-riboside (AICAR) and increasing cytoplasmic Ca(2+) using caffeine, W7 or ionomycin in L6 myotubes increases the concentration of mitochondrial enzymes and GLUT4 and enhances the binding of NRF-1 and NRF-2 to DNA. AICAR and Ca-releasing agents also increase the levels of PGC-1, mitochondrial transcription factor A and myocyte-enhancing factors 2A and 2D. These results are similar to the responses seen in muscle during the adaptation to endurance exercise and show that L6 myotubes are a suitable model for studying the mechanisms by which exercise causes the adaptive responses in muscle mitochondria and glucose transport.


Nutrition Reviews | 2016

Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

Hlengiwe P. Madlala; Gerald J. Maarman; Edward Ojuka

The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge.


American Journal of Physiology-endocrinology and Metabolism | 2016

Measurement of β-oxidation capacity of biological samples by respirometry: a review of principles and substrates.

Edward Ojuka; Brittany Morgan Andrew; Nicole Bezuidenhout; Siddiqah George; Gerald J. Maarman; Hlengiwe P. Madlala; Amy E. Mendham; Prisca Ofure Osiki

Oxidation of fatty acids is a major source of energy in the heart, liver, and skeletal muscle. It can be measured accurately using respirometry in isolated mitochondria, intact cells, and permeabilized cells or tissues. This technique directly measures the rate of oxygen consumption or flux at various respiratory states when appropriate substrates, uncouplers, and inhibitors are used. Acylcarnitines such as palmitoylcarnitine or octanoylcarnitine are the commonly used substrates. The β-oxidation pathway is prone to feedforward inhibition resulting from accumulation of short-chain acyl-CoA and depletion of CoA, but inclusion of malate or carnitine prevents accumulation of these intermediaries and CoA depletion.


American Journal of Physiology-endocrinology and Metabolism | 2014

Suppression of the GLUT4 adaptive response to exercise in fructose-fed rats

Veeraj Goyaram; Tertius A. Kohn; Edward Ojuka

Exercise-induced increase in skeletal muscle GLUT4 expression is associated with hyperacetylation of histone H3 within a 350-bp DNA region surrounding the myocyte enhancer factor 2 (MEF2) element on the Glut4 promoter and increased binding of MEF2A. Previous studies have hypothesized that the increase in MEF2A binding is a result of improved accessibility of this DNA segment. Here, we investigated the impact of fructose consumption on exercise-induced GLUT4 adaptive response and directly measured the accessibility of the above segment to nucleases. Male Wistar rats (n = 30) were fed standard chow or chow + 10% fructose or maltodextrin drinks ad libitum for 13 days. In the last 6 days five animals per group performed 3 × 17-min bouts of intermittent swimming daily and five remained untrained. Triceps muscles were harvested and used to measure 1) GLUT4, pAMPK, and HDAC5 contents by Western blot, 2) accessibility of the DNA segment from intact nuclei using nuclease accessibility assays, 3) acetylation level of histone H3 and bound MEF2A by ChIP assays, and 4) glycogen content. Swim training increased GLUT4 content by ∼66% (P < 0.05) but fructose and maltodextrin feeding suppressed the adaptation. Accessibility of the DNA region to MNase and DNase I was significantly increased by swimming (∼2.75- and 5.75-fold, respectively) but was also suppressed in trained rats that consumed fructose or maltodextrin. Histone H3 acetylation and MEF2A binding paralleled the accessibility pattern. These findings indicate that both fructose and maltodextrin modulate the GLUT4 adaptive response to exercise by mechanisms involving chromatin remodeling at the Glut4 promoter.


Journal of Applied Physiology | 2017

Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes

Gerald J. Maarman; Brittany Morgan Andrew; Dee Blackhurst; Edward Ojuka

Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C2C12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C2C12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid.NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes.


Scientific Reports | 2018

Coordinated autophagy modulation overcomes glioblastoma chemoresistance through disruption of mitochondrial bioenergetics

Jurgen Kriel; Kristian K. Müller-Nedebock; Gerald J. Maarman; Siyasanga Mbizana; Edward Ojuka; Bert Klumperman; Ben Loos

Glioblastoma Multiforme (GBM) is known to be one of the most malignant and aggressive forms of brain cancer due to its resistance to chemotherapy. Recently, GBM was found to not only utilise both oxidative phosphorylation (OXPHOS) and aerobic glycolysis, but also depend on the bulk protein degradation system known as macroautophagy to uphold proliferation. Although autophagy modulators hold great potential as adjuvants to chemotherapy, the degree of upregulation or inhibition necessary to achieve cell death sensitisation remains unknown. Therefore, this study aimed to determine the degree of autophagy modulation necessary to impair mitochondrial bioenergetics to the extent of promoting cell death onset. It was shown that coordinated upregulation of autophagy followed by its inhibition prior to chemotherapy decreased electron transfer system (ETS) and oxidative phosphorylation (OXPHOS) capacity, impaired mitochondrial fission and fusion dynamics and enhanced apoptotic cell death onset in terms of cleaved caspase 3 and cleaved PARP expression. Therefore, coordinated autophagy modulation may present a favourable avenue for improved chemotherapeutic intervention in the future.


Metabolic Brain Disease | 2012

Effect of maternal separation on mitochondrial function and role of exercise in a rat model of Parkinson's disease.

Sharief Hendricks; Edward Ojuka; Lauriston Kellaway; Musa V. Mabandla; Vivienne A. Russell


Journal of Applied Physiology | 2000

Cocaine and exercise: α-1 receptor blockade does not alter muscle glycogenolysis or blood lactacidosis

Robert K. Conlee; K.Patrick Kelly; Edward Ojuka; Roger L. Hammer


The FASEB Journal | 2016

An investigation of the suitability of using octanoylcarnitine together with malate as a substrate combination for assessing Beta-oxidation using High Resolution Respirometry

Prisca Ofure Osiki; Edward Ojuka; Gerald Marmaan


Journal of African Association of Physiological Sciences | 2016

Excessive consumption of fructose-containing sugars: An emerging threat for developing nations?

Gerald J. Maarman; Amy E. Mendham; Hlengiwe P. Madlala; Edward Ojuka

Collaboration


Dive into the Edward Ojuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy E. Mendham

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Ben Loos

Stellenbosch University

View shared research outputs
Researchain Logo
Decentralizing Knowledge