Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Okoth is active.

Publication


Featured researches published by Edward Okoth.


Virus Genes | 2009

Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes

Carmina Gallardo; Dufton Mwaengo; Joseph M. Macharia; Marisa Arias; Evans A. Taracha; Alejandro Soler; Edward Okoth; Elena Martín; Jackline Kasiti; Richard P. Bishop

Complete sequencing of p54-gene from 67 European, American, and West and East African Swine Fever virus (ASFV) isolates revealed that West African and European ASFV isolates classified within the predominant Genotype I according to partial sequencing of p72 were discriminated into four major sub-types on the basis of their p54 sequences. This highlighted the value of p54 gene sequencing as an additional, intermediate-resolution, molecular epidemiological tool for typing of ASFV viruses. We further evaluated p54-based genotyping, in combination with partial sequences of two other genes, for determining the genetic relationships and origin of viruses responsible for disease outbreaks in Kenya. Animals from Western and central Kenya were confirmed as being infected with ASFV using a p72 gene-based PCR assay, following outbreaks of severe hemorrhagic disease in domestic pigs in 2006 and 2007. Eleven hemadsorbing viruses were isolated in macrophage culture and genotyped using a combination of full-length p54-gene sequencing, partial p72-gene sequencing, and analysis of tetrameric amino acid repeat regions within the variable region of the B602L gene (CVR). The data revealed that these isolates were identical in their p72 and p54 sequence to viruses responsible for ASF outbreaks in Uganda in 2003. There was a minor difference in the number of tetrameric repeats within the B602L sequence of the Kenyan isolates that caused the second Kenyan outbreak in 2007. A practical implication of the genetic similarity of the Kenyan and Ugandan viral isolates is that ASF control requires a regional approach.


Journal of General Virology | 2011

African swine fever viruses with two different genotypes, both of which occur in domestic pigs, are associated with ticks and adult warthogs, respectively, at a single geographical site

Carmina Gallardo; Edward Okoth; V. Pelayo; Raquel Anchuelo; Elena Martín; Alicia Simón; Alicia Llorente; Raquel Nieto; Alejandro Soler; Raquel Martín; Marisa Arias; Richard P. Bishop

The role of the ancestral sylvatic cycle of the African swine fever virus (ASFV) is not well understood in the endemic areas of eastern Africa. We therefore analysed the ASF infection status on samples collected from 51 free-ranging warthogs (Phacocherus africanus) and 1576 Ornithodorus porcinus ticks from 26 independent warthog burrows at a single ranch in Kenya. Abattoir samples from 83 domestic pigs without clinical symptoms, originating from specific locations with no recent reported ASF outbreaks were included in this study. All samples were derived from areas of central Kenya, where ASF outbreaks have been reported in the past. Infection with ASFV was confirmed in 22 % of O. porcinus pools, 3.22 % of adult warthog serum samples and 49 % of domestic pig serum samples by using p72-based PCR. All of the warthog sera were positive for anti-ASFV antibodies, investigated by using ELISA, but none of the domestic pig sera were positive. Twenty O. porcinus-, 12 domestic pig- and three warthog-derived viruses were genotyped at four polymorphic loci. The ASFV isolates from ticks and domestic pigs clustered within p72 genotype X. By contrast, ASF viruses genotyped directly from warthog sera, at same locality as the tick isolates, were within p72 genotype IX and genetically similar to viruses causing recent ASF outbreaks in Kenya and Uganda. This represents the first report of the co-existence of different ASFV genotypes in warthog burrow-associated ticks and adult wild warthogs. The data from this and earlier studies suggest transfer of viruses of at least two different p72 genotypes, from wild to domestic pigs in East Africa.


Scientific Reports | 2016

Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

George M. Warimwe; Joseph Gesharisha; B. Veronica Carr; Simeon Otieno; Kennedy Otingah; Danny Wright; Bryan Charleston; Edward Okoth; Lopez-Gil Elena; Gema Lorenzo; El-Behiry Ayman; Naif Khalaf Alharbi; Musaad A. Al-dubaib; Alejandro Brun; Sarah C. Gilbert; Vishvanath Nene; Adrian V. S. Hill

Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A ‘One Health’ vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.


Veterinary Microbiology | 2015

Detection and genetic characterization of porcine group A rotaviruses in asymptomatic pigs in smallholder farms in East Africa: predominance of P[8] genotype resembling human strains.

Joshua O Amimo; J O Junga; Wo Ogara; Anastasia N. Vlasova; Moses N. Njahira; Solomon Maina; Edward Okoth; Richard P. Bishop; Linda J. Saif; Appolinaire Djikeng

Viral enteritis is a serious problem accounting for deaths in neonatal animals and humans worldwide. The absence of surveillance programs and diagnostic laboratory facilities have resulted in a lack of data on rotavirus associated diarrheas in pigs in East Africa. Here we describe the incidence of group A rotavirus (RVA) infections in asymptomatic young pigs in East Africa. Of the 446 samples examined, 26.2% (117/446) were positive for RVA. More nursing piglets (78.7%) shed RVA than weaned (32.9%) and grower (5.8%) pigs. RVA incidence was higher in pigs that were either housed_free-range (77.8%) or tethered_free-range (29.0%) than those that were free-range or housed or housed-tethered pigs. The farms with larger herd size (>10 pigs) had higher RVA prevalence (56.5%) than farms with smaller herd size (24.1-29.7%). This study revealed that age, management system and pig density significantly (p<0.01) influenced the incidence of RVA infections, with housed_free-range management system and larger herd size showing higher risks for RVA infection. Partial (811-1604nt region) sequence of the VP4 gene of selected positive samples revealed that different genotypes (P[6], P[8] and P[13]) are circulating in the study area with P[8] being predominant. The P[6] strain shared nucleotide (nt) and amino acid (aa) sequence identity of 84.4-91.3% and 95.1-96.9%, respectively, with known porcine and human P[6] strains. The P[8] strains shared high nt and aa sequence identity with known human P[8] strains ranging from 95.6-100% to 92-100%, respectively. The P[13] strains shared nt and aa sequence identity of 83.6-91.7% and 89.3-96.4%, respectively, only with known porcine P[13] strains. No P[8] strains yielded RNA of sufficient quality/quantity for full genome sequencing. However analysis of the full genome constellation of the P[6], two P[13] and one untypeable strains revealed that the P[6] strain (Ke-003-5) genome constellation was G26-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1, P[13] strains (Ug-049 and Ug-453) had G5-P[13]-I5-R1-C1-M1-A8-N1-T7-E1-H1 while the untypeable strain (Ug-218) had G5-P[?]-I5-R1-C1-M1-A8-N1-T1-E1-H? In conclusion, P[6] and P[8] genotypes detected were genetically closely related to human strains suggesting the possibility of interspecies transmission. Further studies are required to determine the role of RVA in swine enteric disease burden and to determine the genetic/antigenic heterogeneity of the circulating strains for development of accurate diagnostic tools and to implement appropriate prophylaxis programs.


Virology Journal | 2012

Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2

Anne-Lie Blomström; Karl Ståhl; Charles Masembe; Edward Okoth; Ademun Rose Okurut; Patrick Atmnedi; Stephen J. Kemp; Richard L. Bishop; Sándor Belák; Mikael Berg

BackgroundAs a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda.ResultsApplication of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C–like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing.ConclusionsUsing a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.


Veterinary Microbiology | 2013

Comparative evaluation of novel African swine fever virus (ASF) antibody detection techniques derived from specific ASF viral genotypes with the OIE internationally prescribed serological tests.

Carmina Gallardo; Alejandro Soler; Raquel Nieto; A.L. Carrascosa; G. M. De Mia; Richard P. Bishop; C. Martins; F.O. Fasina; E. Couacy-Hymman; L. Heath; V. Pelayo; E. Martín; A. Simón; R. Martín; A.R. Okurut; I. Lekolol; Edward Okoth; Marisa Arias

The presence of antibodies against African swine fever (ASF), a complex fatal notifiable OIE disease of swine, is always indicative of previous infection, since there is no vaccine that is currently used in the field. The early appearance and subsequent long-term persistence of antibodies combined with cost-effectiveness make antibody detection techniques essential in control programmes. Recent reports appear to indicate that the serological tests recommended by the OIE for ASF monitoring are much less effective in East and Southern Africa where viral genetic and antigenic diversity is the greatest. We report herein an extensive analysis including more than 1000 field and experimental infection sera, in which the OIE recommended tests are compared with antigen-specific ELISAs and immuno-peroxidase staining of cells (IPT). The antibody detection results generated using new antigen-specific tests, developed in this study, which are based on production of antigen fractions generated by infection and virus purification from COS-1 cells, showed strong concordance with the OIE tests. We therefore conclude that the lack of success is not attributable to antigenic polymorphism and may be related to the specific characteristics of the local breeds African pigs.


Preventive Veterinary Medicine | 2013

Comparison of African swine fever virus prevalence and risk in two contrasting pig-farming systems in South-west and Central Kenya

Edward Okoth; Carmina Gallardo; J.M. Macharia; Amos O. Omore; V. Pelayo; D.W. Bulimo; Marisa Arias; Philip Kitala; K. Baboon; I. Lekolol; D. Mijele; Richard P. Bishop

We describe a horizontal survey of African swine fever virus (ASFV) prevalence and risk factors associated with virus infection in domestic pigs in two contrasting production systems in Kenya. A free range/tethering, low input production system in Ndhiwa District of South-western Kenya is compared with a medium input stall fed production system in Kiambu District of Central Kenya. Analysis of variance (ANOVA) of data derived from cluster analysis showed that number of animals, number of breeding sows and number of weaner pigs were a significant factor in classifying farms in Nhiwa and Kiambu. Analysis of blood and serum samples using a PCR assay demonstrated an average animal level positivity to ASFV of 28% in two independent samplings in South-western Kenya and 0% PCR positivity in Central Kenya. No animals were sero-positive in either study site using the OIE indirect-ELISA and none of the animals sampled exhibited clinical symptoms of ASF. The farms that contained ASFV positive pigs in Ndhiwa District were located in divisions bordering the Ruma National Park from which bushpig (Potamochoerus larvatus) incursions into farms had been reported. ASFV prevalence (P<0.05) was significantly higher at distances between 6 and 16km from the National Park than at distances closer or further away. One of the 8 bushpigs sampled from the park, from which tissues were obtained was PCR positive for ASFV. The data therefore indicated a potential role for the bushpig in virus transmission in South-western Kenya, but there was no evidence of a direct sylvatic virus transmission cycle in Central Kenya. ASF control strategies implemented in these areas will need to take these epidemiological findings into consideration.


Tropical Animal Health and Production | 2016

Enhancing knowledge and awareness of biosecurity practices for control of African swine fever among smallholder pig farmers in four districts along the Kenya-Uganda border.

Noelina Nantima; Jocelyn Davies; Michel M. Dione; Michael Ocaido; Edward Okoth; Anthony Mugisha; Richard P. Bishop

A study was undertaken along the Kenya–Uganda border in four districts of Tororo and Busia (Uganda) and Busia and Teso (Kenya) to understand smallholder farmers’ knowledge, practices and awareness of biosecurity measures. Information was collected by administering questionnaires to 645 randomly selected pig households in the study area. In addition, focus group discussions were carried out in 12 villages involving 248 people using a standardized list of questions. The outcome suggested that there was a very low level of awareness of biosecurity practices amongst smallholder farmers. We conclude that adoption of specific biosecurity practices by smallholder farmers is feasible but requires institutional support. There is a clear requirement for government authorities to sensitize farmers using approaches that allow active participation of farmers in the design, planning and implementation of biosecurity practices to enable enhanced adoption.


BMC Genomics | 2015

Functional analysis and transcriptional output of the Göttingen minipig genome.

Tobias Heckel; Roland Schmucki; Marco Berrera; Stephan Ringshandl; Laura Badi; Guido Steiner; Morgane Ravon; Erich Küng; Bernd Kuhn; Nicole A. Kratochwil; Georg Schmitt; Anna Kiialainen; Corinne Nowaczyk; Hamina Daff; Azinwi Phina Khan; Isaac Lekolool; Roger Pelle; Edward Okoth; Richard P. Bishop; Claudia Daubenberger; Martin Ebeling; Ulrich Certa

BackgroundIn the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development.ResultsHere we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we could demonstrate similar expression levels for most phase I drug-metabolizing enzymes. Higher expression levels and metabolic activities were found for FMO1, AKR/CRs and for phase II drug metabolizing enzymes in minipig as compared to human. The variability of gene expression in equivalent human and minipig tissues is considerably higher in minipig organs, which is important for study design in case a human target belongs to this variable category in the minipig. The first analysis of gene expression in multiple tissues during development from young to adult shows that the majority of transcriptional programs are concluded four weeks after birth. This finding is in line with the advanced state of human postnatal organ development at comparative age categories and further supports the minipig as model for pediatric drug safety studies.ConclusionsGenome based assessment of sequence conservation combined with gene expression data in several tissues improves the translational value of the minipig for human drug development. The genome and gene expression data presented here are important resources for researchers using the minipig as model for biomedical research or commercial breeding. Potential impact of our data for comparative genomics, translational research, and experimental medicine are discussed.


PLOS ONE | 2015

Estimating the Basic Reproductive Number (R0) for African Swine Fever Virus (ASFV) Transmission between Pig Herds in Uganda

Mike B. Barongo; Karl Ståhl; Bernard K. Bett; Richard P. Bishop; Eric M. Fèvre; Tony Aliro; Edward Okoth; Charles Masembe; Darryn L. Knobel; Amos Ssematimba

African swine fever (ASF) is a highly contagious, lethal and economically devastating haemorrhagic disease of domestic pigs. Insights into the dynamics and scale of virus transmission can be obtained from estimates of the basic reproduction number (R 0). We estimate R 0 for ASF virus in small holder, free-range pig production system in Gulu, Uganda. The estimation was based on data collected from outbreaks that affected 43 villages (out of the 289 villages with an overall pig population of 26,570) between April 2010 and November 2011. A total of 211 outbreaks met the criteria for inclusion in the study. Three methods were used, specifically; (i) GIS- based identification of the nearest infectious neighbour based on the Euclidean distance between outbreaks, (ii) epidemic doubling time, and (iii) a compartmental susceptible-infectious (SI) model. For implementation of the SI model, three approaches were used namely; curve fitting (CF), a linear regression model (LRM) and the SI/N proportion. The R 0 estimates from the nearest infectious neighbour and epidemic doubling time methods were 3.24 and 1.63 respectively. Estimates from the SI-based method were 1.58 for the CF approach, 1.90 for the LRM, and 1.77 for the SI/N proportion. Since all these values were above one, they predict the observed persistence of the virus in the population. We hypothesize that the observed variation in the estimates is a consequence of the data used. Higher resolution and temporally better defined data would likely reduce this variation. This is the first estimate of R0 for ASFV in a free range smallholder pig keeping system in sub-Saharan Africa and highlights the requirement for more efficient application of available disease control measures.

Collaboration


Dive into the Edward Okoth's collaboration.

Top Co-Authors

Avatar

Richard P. Bishop

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jocelyn Davies

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Appolinaire Djikeng

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wo Ogara

University of Nairobi

View shared research outputs
Top Co-Authors

Avatar

Michel M. Dione

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar

Moses N. Njahira

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge