Edward Pace
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward Pace.
Journal of Neurotrauma | 2012
Johnny C. Mao; Edward Pace; Paige Pierozynski; Zhifeng Kou; Yimin Shen; Pamela J. VandeVord; E. Mark Haacke; Xueguo Zhang; Jinsheng Zhang
Abstract The current study used a rat model to investigate the underlying mechanisms of blast-induced tinnitus, hearing loss, and associated traumatic brain injury (TBI). Seven rats were used to evaluate behavioral evidence of tinnitus and hearing loss, and TBI using magnetic resonance imaging following a single 10-msec blast at 14 psi or 194 dB sound pressure level (SPL). The results demonstrated that the blast exposure induced early onset of tinnitus and central hearing impairment at a broad frequency range. The induced tinnitus and central hearing impairment tended to shift towards high frequencies over time. Hearing threshold measured with auditory brainstem responses also showed an immediate elevation followed by recovery on day 14, coinciding with behaviorally-measured results. Diffusion tensor magnetic resonance imaging results demonstrated significant damage and compensatory plastic changes to certain auditory brain regions, with the majority of changes occurring in the inferior colliculus and medial geniculate body. No significant microstructural changes found in the corpus callosum indicates that the currently adopted blast exposure mainly exerts effects through the auditory pathways rather than through direct impact onto the brain parenchyma. The results showed that this animal model is appropriate for investigation of the mechanisms underlying blast-induced tinnitus, hearing loss, and related TBI. Continued investigation along these lines will help identify pathology with injury/recovery patterns, aiding development of effective treatment strategies.
PLOS ONE | 2013
Edward Pace; Jinsheng Zhang
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Journal of Neuroscience Research | 2014
Hao Luo; Edward Pace; Xueguo Zhang; Jinsheng Zhang
Exposure to high‐pressure blast shock waves is known to cause tinnitus. Although the underlying mechanisms may involve damage to structures in the ear and/or direct brain impact, which triggers a cascade of neuroplastic changes in both auditory and nonauditory centers, it remains unclear how the induced neuroplasticity manifests neurophysiologically. This study investigates the influence of blast exposure on spontaneous firing rates (SFRs) in the dorsal cochlear nucleus (DCN) and its time course in rats with blast‐induced tinnitus. Each rat was exposed to a single blast at 22 psi. Behavioral evidence of tinnitus was measured by using a gap‐detection acoustic startle–reflex paradigm. SFRs were measured 1 day, 1 month, and 3 months after blast exposure. The results showed that nine rats with blast‐induced tinnitus and hearing loss developed hyperactivity immediately and that the induced hyperactivity persisted in six rats with tinnitus at 1 month after blast exposure. At 3 months after blast exposure, however, the induced hyperactivity of four rats with tinnitus transitioned to hypoactivity. In addition, the 20–30‐kHz, and >30‐kHz regions in the DCN of rats with and without blast‐induced tinnitus were more affected than other frequency regions at different recovery time points after blast exposure. These results demonstrate that the neural mechanisms underlying blast‐induced tinnitus are substantially different from those underlying noise‐induced tinnitus.
Neuroscience | 2014
G. Mahmood; Z. Mei; Houmehr Hojjat; Edward Pace; Srinivasu Kallakuri; Jinsheng Zhang
Blast-induced tinnitus, along with associated auditory impairment and traumatic brain injury, is a primary concern facing military service members. To search for treatment, we investigated the therapeutic effects of sildenafil, a phosphodiesterase-5 inhibitor, given its vasodilatory effects and evidence suggesting its beneficial effects on noise-induced hearing loss. Rats were subjected to three consecutive blast exposures at 22 psi and were monitored for tinnitus using a gap-detection acoustic startle reflex paradigm. Hearing thresholds and detection were tested using auditory brainstem responses and prepulse inhibition, respectively. Blasted rats were either treated with sildenafil or tap water following blast exposure, while age-matched sham control rats were treated with sildenafil and no blast exposure. Our results showed that sildenafil did not effectively prevent acute tinnitus onset and hearing impairment. Instead, sildenafil significantly suppressed high-frequency tinnitus from 3 to 6 weeks after blast exposure and reduced hearing impairment during the first week after blast exposure. Complex results were observed in the startle force data, where sildenafil-treated rats displayed significantly reduced startle force compared to the untreated blasted group, suggesting possible mitigation of traumatic brain injury and suppression of hyperacusis-like percepts. Taken together, sildenafil showed a therapeutic effect on blast-induced tinnitus and audiological impairment in a time-dependent manner. Other regimens such as higher dosage prior to blast exposure and combination with other treatments deserve further investigation to optimize the therapeutic effects.
Neuroscience Letters | 2014
Hao Luo; Edward Pace; Xueguo Zhang; Jinsheng Zhang
High-pressure blast shockwaves are known to cause tinnitus. Imaging studies have shown that blast-induced tinnitus may result from damage to the inner ear structures and/or direct brain impact that trigger a cascade of neuroplastic changes in both auditory and non-auditory centers. Nevertheless, information is still lacking on the neurophysiological mechanisms underlying blast-induced tinnitus. In this study, we used a rat model and investigated the effect of blast-induced tinnitus on spontaneous activity in the inferior colliculus (IC) at one day, one month, and three months following blast. Our results showed that rats with behavioral evidence of tinnitus exhibited hyperactivity in all frequency regions at one day post-blast. Although the induced hyperactivity persisted throughout a three-month recording period, it was more robust in middle frequency loci at one month after blast exposure and in middle-to-high-frequency loci at three months after blast. Our results also showed increased bursting rate in the low and middle frequency regions at one day after blast, in the middle frequency region at one month after blast, and in all frequency regions at three months after blast. The findings suggest that neuroplasticity as reflected by shifted tonotopic representations of hyperactivity and bursting activity subserves blast-induced tinnitus and hearing impairment.
Neuroscience | 2017
Hao Luo; Edward Pace; Jinsheng Zhang
Blast exposure can cause tinnitus and hearing impairment by damaging the auditory periphery and direct impact to the brain, which trigger neural plasticity in both auditory and non-auditory centers. However, the underlying neurophysiological mechanisms of blast-induced tinnitus are still unknown. In this study, we induced tinnitus in rats using blast exposure and investigated changes in spontaneous firing and bursting activity in the auditory cortex (AC) at one day, one month, and three months after blast exposure. Our results showed that spontaneous activity in the tinnitus-positive group began changing at one month after blast exposure, and manifested as robust hyperactivity at all frequency regions at three months after exposure. We also observed an increased bursting rate in the low-frequency region at one month after blast exposure and in all frequency regions at three months after exposure. Taken together, spontaneous firing and bursting activity in the AC played an important role in blast-induced chronic tinnitus as opposed to acute tinnitus, thus favoring a bottom-up mechanism.
Hearing Research | 2016
Jinsheng Zhang; Hao Luo; Edward Pace; Liang Li; Bin Liu
Tinnitus, a ringing in the ear or head without an external sound source, is a prevalent health problem. It is often associated with a number of limbic-associated disorders such as anxiety, sleep disturbance, and emotional distress. Thus, to investigate tinnitus, it is important to consider both auditory and non-auditory brain structures. This paper summarizes the psychophysical, immunocytochemical and electrophysiological evidence found in rats or hamsters with behavioral evidence of tinnitus. Behaviorally, we tested for tinnitus using a conditioned suppression/avoidance paradigm, gap detection acoustic reflex behavioral paradigm, and our newly developed conditioned licking suppression paradigm. Our new tinnitus behavioral paradigm requires relatively short baseline training, examines frequency specification of tinnitus perception, and achieves sensitive tinnitus testing at an individual level. To test for tinnitus-related anxiety and cognitive impairment, we used the elevated plus maze and Morris water maze. Our results showed that not all animals with tinnitus demonstrate anxiety and cognitive impairment. Immunocytochemically, we found that animals with tinnitus manifested increased Fos-like immunoreactivity (FLI) in both auditory and non-auditory structures. The manner in which FLI appeared suggests that lower brainstem structures may be involved in acute tinnitus whereas the midbrain and cortex are involved in more chronic tinnitus. Meanwhile, animals with tinnitus also manifested increased FLI in non-auditory brain structures that are involved in autonomic reactions, stress, arousal and attention. Electrophysiologically, we found that rats with tinnitus developed increased spontaneous firing in the auditory cortex (AC) and amygdala (AMG), as well as intra- and inter-AC and AMG neurosynchrony, which demonstrate that tinnitus may be actively produced and maintained by the interactions between the AC and AMG.
PLOS ONE | 2016
Edward Pace; Hao Luo; Michael Bobian; Ajay Panekkad; Xueguo Zhang; Huiming Zhang; Jinsheng Zhang
Numerous behavioral paradigms have been developed to assess tinnitus-like behavior in animals. Nevertheless, they are often limited by prolonged training requirements, as well as an inability to simultaneously assess onset and lasting tinnitus behavior, tinnitus pitch or duration, or tinnitus presence without grouping data from multiple animals or testing sessions. To enhance behavioral testing of tinnitus, we developed a conditioned licking suppression paradigm to determine the pitch(s) of both onset and lasting tinnitus-like behavior within individual animals. Rats learned to lick water during broadband or narrowband noises, and to suppress licking to avoid footshocks during silence. After noise exposure, rats significantly increased licking during silent trials, suggesting onset tinnitus-like behavior. Lasting tinnitus-behavior, however, was exhibited in about half of noise-exposed rats through 7 weeks post-exposure tested. Licking activity during narrowband sound trials remained unchanged following noise exposure, while ABR hearing thresholds fully recovered and were comparable between tinnitus(+) and tinnitus(-) rats. To assess another tinnitus inducer, rats were injected with sodium salicylate. They demonstrated high pitch tinnitus-like behavior, but later recovered by 5 days post-injection. Further control studies showed that 1): sham noise-exposed rats tested with footshock did not exhibit tinnitus-like behavior, and 2): noise-exposed or sham rats tested without footshocks showed no fundamental changes in behavior compared to those tested with shocks. Together, these results demonstrate that this paradigm can efficiently test the development of noise- and salicylate-induced tinnitus behavior. The ability to assess tinnitus individually, over time, and without averaging data enables us to realistically address tinnitus in a clinically relevant way. Thus, we believe that this optimized behavioral paradigm will facilitate investigations into the mechanisms of tinnitus and development of effective treatments.
PLOS ONE | 2018
Srinivasu Kallakuri; Edward Pace; Huichao Lu; Hao Luo; John M. Cavanaugh; Jinsheng Zhang
Blast exposure is an increasingly significant health hazard and can have a range of debilitating effects, including auditory dysfunction and traumatic brain injury. To assist in the development of effective treatments, a greater understanding of the mechanisms of blast-induced auditory damage and dysfunction, especially in the central nervous system, is critical. To elucidate this area, we subjected rats to a unilateral blast exposure at 22 psi, measured their auditory brainstem responses (ABRs), and histologically processed their brains at 1 day, 1 month, and 3-month survival time points. The left and right auditory cortices was assessed for astrocytic reactivity and axonal degenerative changes using glial fibrillary acidic protein immunoreactivity and a silver impregnation technique, respectively. Although only unilateral hearing loss was induced, astrocytosis was bilaterally elevated at 1 month post-blast exposure compared to shams, and showed a positive trend of elevation at 3 months post-blast. Axonal degeneration, on the other hand, appeared to be more robust at 1 day and 3 months post-blast. Interestingly, while ABR threshold shifts recovered by the 1 and 3-month time-points, a positive correlation was observed between rats’ astrocyte counts at 1 month post-blast and their threshold shifts at 1 day post-blast. Taken together, our findings suggest that central auditory damage may have occurred due to biomechanical forces from the blast shockwave, and that different indicators/types of damage may manifest over different timelines.
Neuroscience | 2018
Samer Masri; Li S. Zhang; Hao Luo; Edward Pace; Jinsheng Zhang; Shaowen Bao
Blast exposure can cause various auditory disorders including tinnitus, hyperacusis, and other central auditory processing disorders. While this is suggestive of pathologies in the central auditory system, the impact of blast exposure on central auditory processing remains poorly understood. Here we examined the effects of blast shockwaves on acoustic response properties and the tonotopic frequency map in the auditory cortex. We found that multiunits recorded from the auditory cortex exhibited higher acoustic thresholds and broader frequency tuning in blast-exposed animals. Furthermore, the frequency map in the primary auditory cortex was distorted. These changes may contribute to central auditory processing disorders.