Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward Perez-Reyes is active.

Publication


Featured researches published by Edward Perez-Reyes.


Neuron | 2000

Nomenclature of voltage-gated sodium channels

Eric A. Ertel; Kevin P. Campbell; Michael Miller Harpold; Franz Hofmann; Yasuo Mori; Edward Perez-Reyes; Arnold Schwartz; Terry P. Snutch; Tsutomu Tanabe; Lutz Birnbaumer; Richard W. Tsien; William A. Catterall

Voltage-gated Ca2+ channels mediate calcium influx in response to membrane depolarization and regulate intracellular processes such as contraction, secretion, neurotransmission, and gene expression. They are members of a gene superfamily of transmembrane ion channel proteins that includes voltage-gated K+ and Na+ channels. The Ca2+ channels that have been characterized biochemically are complex proteins composed of four or five distinct subunits, which are encoded by multiple genes. The α1 subunit of 190–250 kDa is the largest subunit, and it incorporates the conduction pore, the voltage sensor and gating apparatus, and the known sites of channel regulation by second messengers, drugs, and toxins. An intracellular β subunit and a transmembrane, disulfide-linked α2δ subunit complex are components of most types of Ca2+ channels. A γ subunit has also been found in skeletal muscle Ca2+ channels, and related subunits are expressed in heart and brain. Although these auxiliary subunits modulate the properties of the channel complex, the pharmacological and electrophysiological diversity of Ca2+ channels arises primarily from the existence of multiple forms of α1 subunits. Mammalian α1 subunits are encoded by at least ten distinct genes. Historically, various names have been given to the corresponding gene products, giving rise to distinct and sometimes confusing nomenclatures. In 1994, some of us proposed a unified nomenclature based on the most widely accepted system at the time: α1 subunits were referred to as α1S for the original skeletal muscle isoform and α1A through α1E for those discovered subsequently (Birnbaumer et al. 1994xBirnbaumer, L., Campbell, K.P., Catterall, W.A., Harpold, M.M., Hofmann, F., Horne, W.A., Mori, Y., Schwartz, A., Snutch, T.P., Tanabe, T. et al. Neuron. 1994; 13: 505–506Abstract | Full Text PDF | PubMed | Scopus (264)See all ReferencesBirnbaumer et al. 1994). Since then, four new α1 subunits have been identified, which were named α1F through α1I.Ca2+ currents recorded in different cell types have diverse physiological and pharmacological properties, and an alphabetical nomenclature has also evolved for the distinct classes of Ca2+ currents. L-type Ca2+ currents require a strong depolarization for activation, are long lasting, and are blocked by the organic L-type Ca2+ channel antagonists, including dihydropyridines, phenylalkylamines, and benzothiazepines. They are the main Ca2+ currents recorded in muscle and endocrine cells, where they initiate contraction and secretion. N-type, P/Q-type, and R-type Ca2+ currents also require strong depolarization for activation. They are unaffected by L-type Ca2+ antagonist drugs but are blocked by specific polypeptide toxins from snail and spider venoms. They are expressed primarily in neurons, where they initiate neurotransmission at most fast synapses. T-type Ca2+ currents are activated by weak depolarizations and are transient. They are resistant to both organic antagonists and to the snake and spider toxins used to define the N- and P/Q-type Ca2+ currents. They are expressed in a wide variety of cell types, where they are involved in shaping the action potential and controlling patterns of repetitive firing.As new Ca2+ channel genes are cloned, it is apparent that these two alphabetical nomenclatures will overlap at α1L, which may not mediate an L-type Ca2+ current and therefore may create confusion. Moreover, the present alphabetical nomenclature does not reveal the structural relationships among the α1 subunits, which can be grouped into three families: (1) α1S, α1C, α1D, and α1F; (2) α1A, α1B, and α1E; and (3) α1G, α1H, and α1I. The complete amino acid sequences of these α1 subunits are more than 70% identical within a family but less than 40% identical among families. These family relationships are illustrated for the more conserved transmembrane and pore domains in Figure 1Figure 1. Division of calcium channels into these three families is phylogenetically ancient, as representatives of each are found in the C. elegans genome. Ideally, a nomenclature for Ca2+ channel α1 subunits should provide a systematic organization based on their structural relationships and should be coordinated with nomenclatures for the other families of voltage-gated ion channels of different ionic selectivities (ie., K+ and Na+).Figure 1Phylogeny of Voltage-Gated Ca2+ Channel α1 SubunitsOnly the membrane-spanning segments and the pore loops (∼350 amino acids) are compared. First, all sequence pairs were compared, which clearly defines three families with intrafamily sequence identities above 80% (CaV1.m, CaV2.m, CaV3.m). Then, a consensus sequence was defined for each family, and these three sequences were compared to one another, with interfamily sequence identities of ∼52% (CaV1.m versus CaV2.m) and 28% (CaV3.m versus CaV1.m or CaV2.m).View Large Image | View Hi-Res Image | Download PowerPoint SlideFor these reasons, we wish to propose a new nomenclature of voltage-gated Ca2+ channels (Table 1Table 1), which is more systematic and mimics the well-defined K+ channel nomenclature (Chandy et al., 1991xChandy, K.G. Nature. 1991; 352: 26Crossref | PubMedSee all ReferencesChandy et al., 1991). This nomenclature uses a numerical system (KV1.1, KV2.1, KV3.1, etc.) to define families and subfamilies of K+ channels based on similarities in amino acid sequences. In a similar manner, we propose that Ca2+ channels should be renamed using the chemical symbol of the principal permeating ion (Ca) with the principal physiological regulator (voltage) indicated as a subscript (CaV). The numerical identifier would correspond to the CaV channel α1 subunit gene family (1 through 3 at present) and the order of discovery of the α1 subunit within that family (1 through m). According to this nomenclature, the CaV1 family (CaV1.1 through CaV1.4) includes channels containing α1S, α1C, α1D, and α1F, which mediate L-type Ca2+ currents (Table 1Table 1). The CaV2 family (CaV2.1 through CaV2.3) includes channels containing α1A, α1B, and α1E, which mediate P/Q-type, N-type, and R-type Ca2+ currents, respectively (Table 1Table 1). The CaV3 family (CaV3.1 through CaV3.3) includes channels containing α1G, α1H, and α1I, which mediate T-type Ca2+ currents (Table 1Table 1). When specific reference to the α1 subunit within the Ca2+ channel complex is intended, the designation α11.m, α12.m, or α13.m may be used, where the numeral m represents the individual gene/protein within the family. Where applicable, lowercase letters are used to distinguish alternatively spliced variants (e.g., CaV1.2a corresponds to channels containing the cardiac variant of the former α1C). Such a systematic nomenclature has proved successful for the KV channel proteins. Its strength resides in the rational basis derived from the structural relationships among the channel proteins and the ease and precision with which new channels can be added.Table 1Proposed Nomenclature for Cloned Voltage-Gated Ca2+ Channel α1 SubunitsNameFormer NamesAccession NumberGene Name and Human ChromosomeSplice TypesFormer NamesPrimary TissuesCav1.1 α11.1α1S, α1Skm, CaCh1X05921CACNA1S; 1q31-32skeletal muscleCav1.2α1C, rbC, CaCh2CaCh2, X15539CACNA1C; 12p13.3Cav1.2aα1C-aheartα11.2Cav1.2bα1C-bsmooth musclerbC-I, M67516; rbC-II, M67515Cav1.2cα1C-bbrain, heart, pituitary, adrenalCav1.3 α11.3α1D, rbD, CaCh3M76558CACNA1D; 3p14.3brain, pancreas, kidney, ovary, cochleaCav1.4α1FAJ224874CACNA1F; Xp11.23retinaα11.4Cav2.1α1A, rbA, CaCh4, BIrbA, M64373; BI-1, X57476CACNA1A; 19p13Cav2.1aBI1brain, cochlea, pituitaryα12.1BI-2, X57477Cav2.1bBI2brain, cochlea, pituitaryCav2.2α1B, rbB, CaCh5, BIIIrbB, M92905; BIII, D14157;CACNA1B; 9q34Cav2.2aα1B-1brain, nervous systemα12.2human α1B, M94172Cav2.2bα1B-2brain, nervous systemCav2.3α1E, rbE, CaCh6, BIIrbE, L15453, BII-1, X67855;CACNA1E; 1q25-31Cav2.3aBIIbrain, cochlea, retina, heart,α12.3human α1E, L29384pituitaryCav2.3bBII2brain, cochlea, retinaCav3.1α1GAF027984; AF029228CACNA1G; 17q22Cav3.1abrain, nervous systemα13.1Cav3.2α1HAF051946; AF073931CACNA1H; 16p13.3Cav3.2abrain, heart, kidney, liverα13.2Cav3.3α1IAF086827CACNA1I; 22q12.3-13-2Cav3.3abrainα13.3The cloned voltage-gated Ca2+ channels and most widely studied alternate splice forms are presented together with the proposed nomenclature and previous nomenclatures.The nomenclature of the auxiliary subunits is not modified, since it already includes numbers for the gene family and lowercase letters for the splice variants. Thus, the subunit compositions of the voltage-dependent Ca2+ channels CaVn.mx may be described as α1n.mx/βm′x′/γm′′x′′/α2δm′′′x′′′ complexes, where the number n defines a main family, the numbers m, m′, m′′, and m′′′ refer to the individual genes/proteins within the families, and the letters x, x′, x′′, and x′′′ identify the splice variants. Standard prefixes can be placed in front of the channel name to identify the species of origin. In this notation, the skeletal muscle calcium channel would be written α11.1a/β1a/γ1a/α2δ1a. With this new nomenclature, the CaV designation may also be used to identify calcium channel auxiliary subunits such as CaVβ or CaVγ independent of their presence in a calcium channel complex.We hope that this new nomenclature for α1 subunits will be a stimulus to further research on voltage-gated Ca2+ channels by providing a common, easily accessible standard of reference for scientists working in this field. A full-length review article** is planned to present a more detailed proposal for nomenclature of the many alternate splice forms of the α1 subunits and the auxiliary subunits of Ca2+ channels that have been described in cDNA cloning experiments.*This nomenclature has been approved by the Nomenclature Committee of the International Union of Pharmacology, and a review article giving more details of the nomenclature for calcium channel subunits and splice variants is planned for Pharmacological Reviews.


Nature | 1998

Molecular characterization of a neuronal low-voltage-activated T-type calcium channel

Edward Perez-Reyes; Leanne L. Cribbs; Asif N. Daud; Antonio E. Lacerda; Jane Barclay; Magali Williamson; Margaret Fox; Michele Rees; Jung-Ha Lee

The molecular diversity of voltage-activated calcium channels was established by studies showing that channels could be distinguished by their voltage-dependence, deactivation and single-channel conductance. Low-voltage-activated channels are called ‘T’ type because their currents are both transient (owing to fast inactivation) and tiny (owing to small conductance). T-type channels are thought to be involved in pacemaker activity, low-threshold calcium spikes, neuronal oscillations and resonance, and rebound burst firing. Here we report the identification of a neuronal T-type channel. Our cloning strategy began with an analysis of Genbank sequences defined as sharing homology with calcium channels. We sequenced an expressed sequence tag (EST), then used it to clone a full-length complementary DNA from rat brain. Northern blot analysis indicated that this gene is expressed predominantly in brain, in particular the amygdala, cerebellum and thalamus. We mapped the human gene to chromosome 17q22, and the mouse gene to chromosome 11. Functional expression of the channel was measured in Xenopus oocytes. Based on the channels distinctive voltage dependence, slow deactivation kinetics, and 7.5-pS single-channel conductance, we conclude that this channel is a low-voltage-activated T-type calcium channel.


Circulation Research | 1998

Cloning and Characterization of α1H From Human Heart, a Member of the T-Type Ca2+ Channel Gene Family

Leanne L. Cribbs; Jin Hee Lee; Jianfeng Yang; Jonathan Satin; Yan Jessie Zhang; Asif N. Daud; Jane Barclay; Magali Williamson; Mark H Fox; Michele Rees; Edward Perez-Reyes

Voltage-activated Ca2+ channels exist as multigene families that share common structural features. Different Ca2+ channels are distinguished by their electrophysiology and pharmacology and can be classified as either low or high voltage-activated channels. Six alpha1 subunit genes cloned previously code for high voltage-activated Ca2+ channels; therefore, we have used a database search strategy to identify new Ca2+ channel genes, possibly including low voltage-activated (T-type) channels. A novel expressed sequence-tagged cDNA clone of alpha1G was used to screen a cDNA library, and in the present study, we report the cloning of alpha1H (or CavT.2), a low voltage-activated Ca2+ channel from human heart. Northern blots of human mRNA detected more alpha1H expression in peripheral tissues, such as kidney and heart, than in brain. We mapped the gene, CACNA1H, to human chromosome 16p13.3 and mouse chromosome 17. Expression of alpha1H in HEK-293 cells resulted in Ca2+ channel currents displaying voltage dependence, kinetics, and unitary conductance characteristic of native T-type Ca2+ channels. The alpha1H channel is sensitive to mibefradil, a nondihydropyridine Ca2+ channel blocker, with an IC50 of 1.4 micromol/L, consistent with the reported potency of mibefradil for T-type Ca2+ channels. Together with alpha1G, a rat brain T-type Ca2+ channel also cloned in our laboratory, these genes define a unique family of Ca2+ channels.


Biophysical Journal | 1999

Nickel Block of Three Cloned T-Type Calcium Channels: Low Concentrations Selectively Block α1H

Jung-Ha Lee; Juan Carlos Gomora; Leanne L. Cribbs; Edward Perez-Reyes

Nickel has been proposed to be a selective blocker of low-voltage-activated, T-type calcium channels. However, studies on cloned high-voltage-activated Ca(2+) channels indicated that some subtypes, such as alpha1E, are also blocked by low micromolar concentrations of NiCl(2). There are considerable differences in the sensitivity to Ni(2+) among native T-type currents, leading to the hypothesis that there may be more than one T-type channel. We confirmed part of this hypothesis by cloning three novel Ca(2+) channels, alpha1G, H, and I, whose currents are nearly identical to the biophysical properties of native T-type channels. In this study we examined the nickel block of these cloned T-type channels expressed in both Xenopus oocytes and HEK-293 cells (10 mM Ba(2+)). Only alpha1H currents were sensitive to low micromolar concentrations (IC(50) = 13 microM). Much higher concentrations were required to half-block alpha1I (216 microM) and alpha1G currents (250 microM). Nickel block varied with the test potential, with less block at potentials above -30 mV. Outward currents through the T channels were blocked even less. We show that depolarizations can unblock the channel and that this can occur in the absence of permeating ions. We conclude that Ni(2+) is only a selective blocker of alpha1H currents and that the concentrations required to block alpha1G and alpha1I will also affect high-voltage-activated calcium currents.


The Journal of Neuroscience | 1999

Cloning and Expression of a Novel Member of the Low Voltage-Activated T-Type Calcium Channel Family

Jung-Ha Lee; Asif N. Daud; Leanne L. Cribbs; Antonio E. Lacerda; Alexei Pereverzev; Udo Klöckner; Toni Schneider; Edward Perez-Reyes

Low voltage-activated Ca2+ channels play important roles in pacing neuronal firing and producing network oscillations, such as those that occur during sleep and epilepsy. Here we describe the cloning and expression of the third member of the T-type family, α1I or CavT.3, from rat brain. Northern analysis indicated that it is predominantly expressed in brain. Expression of the cloned channel in either Xenopusoocytes or stably transfected human embryonic kidney-293 cells revealed novel gating properties. We compared these electrophysiological properties to those of the cloned T-type channels α1G and α1H and to the high voltage-activated channels formed by α1Eβ3. The α1I channels opened after small depolarizations of the membrane similar to α1G and α1H but at more depolarized potentials. The kinetics of activation and inactivation were dramatically slower, which allows the channel to act as a Ca2+ injector. In oocytes, the kinetics were even slower, suggesting that components of the expression system modulate its gating properties. Steady-state inactivation occurred at higher potentials than any of the other T channels, endowing the channel with a substantial window current. The α1I channel could still be classified as T-type by virtue of its criss-crossing kinetics, its slow deactivation (tail current), and its small (11 pS) conductance in 110 mm Ba2+ solutions. Based on its brain distribution and novel gating properties, we suggest that α1I plays important roles in determining the electroresponsiveness of neurons, and hence, may be a novel drug target.


Pharmacological Reviews | 2003

International Union of Pharmacology. XL. Compendium of Voltage-Gated Ion Channels: Calcium Channels

William A. Catterall; Joerg Striessnig; Terrance P. Snutch; Edward Perez-Reyes

This summary article presents an overview of the molecular relationships among the voltage-gated calcium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels.1 The complete Compendium, including data tables for each member of the calcium channel family can be found at http://www.iuphar-db.org/iuphar-ic/.


The EMBO Journal | 2001

Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide

Jean Chemin; Arnaud Monteil; Edward Perez-Reyes; Joël Nargeot; Philippe Lory

Low‐voltage‐activated or T‐type Ca2+ channels (T‐channels) are widely expressed, especially in the central nervous system where they contribute to pacemaker activities and are involved in the pathogenesis of epilepsy. Proper elucidation of their cellular functions has been hampered by the lack of selective pharmacology as well as the absence of generic endogenous regulations. We report here that both cloned (α1G, α1H and α1I subunits) and native T‐channels are blocked by the endogenous cannabinoid, anandamide. Anandamide, known to exert its physiological effects through cannabinoid receptors, inhibits T‐currents independently from the activation of CB1/CB2 receptors, G‐proteins, phospholipases and protein kinase pathways. Anandamide appears to be the first endogenous ligand acting directly on T‐channels at submicromolar concentrations. Block of anandamide membrane transport by AM404 prevents T‐current inhibition, suggesting that anandamide acts intracellularly. Anandamide preferentially binds and stabilizes T‐channels in the inactivated state and is responsible for a significant decrease of T‐currents associated with neuronal firing activities. Our data demonstrate that anandamide inhibition of T‐channels can regulate neuronal excitability and account for CB receptor‐independent effects of this signaling molecule.


The Journal of Physiology | 2002

Specific contribution of human T‐type calcium channel isotypes (α1G, α1H and α1I) to neuronal excitability

Jean Chemin; Arnaud Monteil; Edward Perez-Reyes; Emmanuel Bourinet; Joël Nargeot; Philippe Lory

In several types of neurons, firing is an intrinsic property produced by specific classes of ion channels. Low‐voltage‐activated T‐type calcium channels (T‐channels), which activate with small membrane depolarizations, can generate burst firing and pacemaker activity. Here we have investigated the specific contribution to neuronal excitability of cloned human T‐channel subunits. Using HEK‐293 cells transiently transfected with the human α1G (CaV3.1), α1H (CaV3.2) and α1I (CaV3.3) subunits, we describe significant differences among these isotypes in their biophysical properties, which are highlighted in action potential clamp studies. Firing activities occurring in cerebellar Purkinje neurons and in thalamocortical relay neurons used as voltage clamp waveforms revealed that α1G channels and, to a lesser extent, α1H channels produced large and transient currents, while currents related to α1I channels exhibited facilitation and produced a sustained calcium entry associated with the depolarizing after‐potential interval. Using simulations of reticular and relay thalamic neuron activities, we show that α1I currents contributed to sustained electrical activities, while α1G and α1H currents generated short burst firing. Modelling experiments with the NEURON model further revealed that the α1G channel and α1I channel parameters best accounted for T‐channel activities described in thalamocortical relay neurons and in reticular neurons, respectively. Altogether, the data provide evidence for a role of α1I channel in pacemaker activity and further demonstrate that each T‐channel pore‐forming subunit displays specific gating properties that account for its unique contribution to neuronal firing.


Nature Neuroscience | 1998

Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin.

Rosalind S-I. Chuang; Howard Jaffe; Leanne L. Cribbs; Edward Perez-Reyes; Kenton J. Swartz

The biophysical properties of T-type voltage-gated calcium channels are well suited to pacemaking and to supporting calcium flux near the resting membrane potential in both excitable and non-excitable cells. We have identified a new scorpion toxin (kurtoxin) that binds to the α1G T-type calcium channel with high affinity and inhibits the channel by modifying voltage-dependent gating. This toxin distinguishes between α1G T-type calcium channels and other types of voltage-gated calcium channels, including α 1A, α1B, α1C and α1E. Like the other α-scorpion toxins to which it is related, kurtoxin also interacts with voltage-gated sodium channels and slows their inactivation. Kurtoxin will facilitate characterization of the subunit composition of T-type calcium channels and help determine their involvement in electrical and biochemical signaling.


European Journal of Neuroscience | 1999

Comparison of the Ca2 + currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, of low-voltage-activated T-type Ca2 + channels

Udo Klöckner; Jung-Ha Lee; Leanne L. Cribbs; Asif N. Daud; Jürgen Hescheler; Alexei Pereverzev; Edward Perez-Reyes; Toni Schneider

Expression of rat α1G, human α1H and rat α1I subunits of voltage‐activated Ca2 +  channels in HEK‐293 cells yields robust Ca2 +  inward currents with 1.25 mm Ca2 +  as the charge carrier. Both similarities and marked differences are found between their biophysical properties. Currents induced by expression of α1G show the fastest activation and inactivation kinetics. The α1H and α1I currents activate and inactivate up to 1.5‐ and 5‐fold slower, respectively. No differences in the voltage dependence of steady state inactivation are detected. Currents induced by expression of α1G and α1H deactivate with time constants of up to 6 ms at a test potential of − 80 mV, but currents induced by α1I deactivate about three‐fold faster. Recovery from short‐term inactivation is more than three‐fold slower for currents induced by α1H and α1I in comparison to α1G. In contrast to these characteristics, reactivation after long‐term inactivation was fastest for currents arising from expression of α1I and slowest in cells expressing α1H calcium channels. The calcium inward current induced by expression of α1I is increased by positive prepulses while currents induced by α1H and α1G show little ( <  5%) or no facilitation. The data thus provide a characteristic fingerprint of each channels activity, which may allow correlation of the α1G, α1H and α1I induced currents with their in vivo counterparts.

Collaboration


Dive into the Edward Perez-Reyes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lutz Birnbaumer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Asif N. Daud

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangyang Wei

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Philippe Lory

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge