Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward W. Keefer is active.

Publication


Featured researches published by Edward W. Keefer.


Nature Nanotechnology | 2008

Carbon nanotube coating improves neuronal recordings

Edward W. Keefer; B. R. Botterman; Mario I. Romero; Andrew F. Rossi; Guenter W. Gross

Implanting electrical devices in the nervous system to treat neural diseases is becoming very common. The success of these brain-machine interfaces depends on the electrodes that come into contact with the neural tissue. Here we show that conventional tungsten and stainless steel wire electrodes can be coated with carbon nanotubes using electrochemical techniques under ambient conditions. The carbon nanotube coating enhanced both recording and electrical stimulation of neurons in culture, rats and monkeys by decreasing the electrode impedance and increasing charge transfer. Carbon nanotube-coated electrodes are expected to improve current electrophysiological techniques and to facilitate the development of long-lasting brain-machine interface devices.


Trends in Biotechnology | 2001

Detection of physiologically active compounds using cell-based biosensors

David A. Stenger; Guenter W. Gross; Edward W. Keefer; Kara M. Shaffer; Joanne D. Andreadis; Wu Ma; Joseph J. Pancrazio

Cell-based biosensors are portable devices that contain living biological cells that monitor physiological changes induced by exposure to environmental perturbations such as toxicants, pathogens or other agents. Methods of detecting physiological changes include extracellular electrical recordings, optical measurements, and, in the future, functional genomics and proteomics. Several technical developments are occurring that will increase the feasibility of cell-based biosensors for field applications; these developments include stem cell and 3D culture technologies. Possible scenarios for the use of cell-based biosensors include broad-range detectors of unknown threat agents and functional assessment of identified agents.


Journal of Biomaterials Science-polymer Edition | 2007

Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns.

Pedro Galvan-Garcia; Edward W. Keefer; Fan Yang; Mei Zhang; Shaoli Fang; Anvar A. Zakhidov; Ray H. Baughman; Mario I. Romero

Carbon nanotubes (CNTs) have unique chemical and physical properties anticipated to enable broad novel biomedical applications. Yet the question concerning their biocompatibility remains controversial. We recently reported a method for rapidly preparing strong, highly electrically conducting sheets and yarns from multi-walled CNTs. The present studies demonstrate that highly oriented 50-nm-thick semi-transparent CNT sheets and yarns, produced with a minimal residual content of catalytic transition materials, support the long-term growth of a variety of cell types ranging from skin fibroblasts and Schwann cells, to postnatal cortical and cerebellar neurons. We show that CNT sheets stimulate fibroblast cell migration compared to plastic and glass culture substrates; entice neuronal growth to the level of those achieved on polyornithine-coated glass and can be used for directed cellular growth. These findings have positive implications for the use of CNTs in applications such as tissue engineering, wound healing, neural interfaces and biosensors.


Biosensors and Bioelectronics | 2000

Drug evaluations using neuronal networks cultured on microelectrode arrays.

S.I Morefield; Edward W. Keefer; K.D Chapman; Guenter W. Gross

We used spontaneously active neuronal networks derived from dissociated embryonic murine spinal cord and auditory cortex and grown on substrate-integrated thin-film microelectrodes to determine characteristic responses to the cannabinoid agonists anandamide (AN) and methanandamide (MA). AN and MA reversibly inhibited spike and burst production in both tissue types. Responses of 21 cultures ranging in age from 23 to 111 days in vitro (d.i.v.) showed high intra- and inter-culture reproducibility at all ages. However, responses were tissue and substance-dependent. AN and MA were equipotent in cortical cultures and terminated bursting and spiking at 2.5 +/- 0.9 microM (n = 10). Spinal cultures were shut-off by 1.3 +/- 0.7 microM (n = 15) AN, but required 5.8 +/- 1.2 microM MA for activity cessation. MA, but not AN, demonstrated a biphasic influence: excitation at 0.25-3.5 microM and suppression at 4-7.1 microM. Palmitoylethanolamide, a related lipophilic molecule with no reported binding to the CBI receptor (to which AN and MA bind in the central nervous system), did not affect network activity at concentrations up to 6.5 microM. Irreversible cessation of activity was observed after 30 min applications of AN or MA at > 7 microM.


Biosensors and Bioelectronics | 2001

Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors

Edward W. Keefer; Alexandra Gramowski; David A. Stenger; Joseph J. Pancrazio; Guenter W. Gross

We have utilized cultured neuronal networks grown on microelectrode arrays to demonstrate rapid, reliable detection of a toxic compound, trimethylolpropane phosphate (TMPP). Initial experiments, which were performed blind, demonstrated rapid classification of the compound as a convulsant, a finding consistent with previous whole animal neurobehavioral studies. TMPP (2-200 microM) reorganized network spike activity into synchronous, quasi-periodic burst episodes. Integrated burst amplitudes invariably increased, reflecting higher spike frequencies within each burst. The variability of network burst parameters, quantified as coefficients of variation (CVs), was decreased. Mean CVs for burst duration, interburst interval, and burst rate were lowered by 42+/-13, 58+/-5.5, and 62+/-1.8%, respectively (mean+/-SEM, n=8 cultures, 197 channels). These changes in network activity paralleled the effects induced by bicuculline, a known disinhibitory and seizure-inducing drug, and confirmed classification of TMPP as a potential epileptogenic compound. Simple pharmacological tests permit exploration of mechanisms underlying observed activity shifts. The EC(50) for GABA inhibition of network activity was increased from 2.8 to 7.0 microM by 20 microM TMPP and to 20.5 microM by 200 microM TMPP. Parallel dose-response curves suggest that TMPP acts by a competitive antagonism of GABA inhibition, and are consistent with reported patch-clamp analysis of TMPP-induced reduction of inhibitory postsynaptic current amplitudes. The potency of TMPP in generating epileptiform activity in vitro was comparable to concentrations reported for in vivo studies. TMPP and bicuculline produced both increases and decreases in burst rate depending on native spontaneous bursting levels. These results demonstrate a need for multivariate analysis of network activity changes to yield accurate predictions of compound effects.


Experimental Neurology | 2008

Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease

Melissa K. McCoy; Terina N. Martinez; Kelly A. Ruhn; Philip C. Wrage; Edward W. Keefer; B. R. Botterman; Keith E. Tansey; Malú G. Tansey

Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway. In vitro-expanded naïve or differentiated ADAS cells were autologously transplanted into substantia nigra 1 week after an intrastriatal 6-hydroxydopamine injection. Neurochemical and behavioral measures demonstrated neuroprotective effects of both ADAS grafts against 6-hydroxydopamine-induced dopaminergic neuron death, suggesting that pre-transplantation differentiation of the cells does not determine their ability to survive or neuroprotect in vivo. Therefore, we investigated whether equivalent protection by naïve and neurally-induced ADAS grafts resulted from robust in situ differentiation of both graft types into dopaminergic fates. Immunohistological analyses revealed that ADAS cells did not adopt dopaminergic cell fates in situ, consistent with the limited ability of these cells to undergo terminal differentiation into electrically active neurons in vitro. Moreover, re-exposure of neurally-differentiated ADAS cells to serum-containing medium in vitro confirmed ADAS cell phenotypic instability (plasticity). Lastly, given that gene expression analyses of in vitro-expanded ADAS cells revealed that both naïve and differentiated ADAS cells express potent dopaminergic survival factors, ADAS transplants may have exerted neuroprotective effects by production of trophic factors at the lesion site. ADAS cells may be ideal for ex vivo gene transfer therapies in Parkinsons disease treatment.


Journal of Biomedical Materials Research Part B | 2014

Thiol-ene/acrylate substrates for softening intracortical electrodes

Taylor Ware; Dustin Simon; Clive Liu; Tabassum Musa; Srikanth Vasudevan; Andrew M. Sloan; Edward W. Keefer; Robert L. Rennaker; Walter Voit

Neural interfaces have traditionally been fabricated on rigid and planar substrates, including silicon and engineering thermoplastics. However, the neural tissue with which these devices interact is both 3D and highly compliant. The mechanical mismatch at the biotic-abiotic interface is expected to contribute to the tissue response that limits chronic signal recording and stimulation. In this work, novel ternary thiol-ene/acrylate polymer networks are used to create softening substrates for neural recording electrodes. Thermomechanical properties of the substrates are studied through differential scanning calorimetry and dynamic mechanical analysis both before and after exposure physiological conditions. This substrate system softens from more than 1 GPa to 18 MPa on exposure to physiological conditions: reaching body temperature and taking up less than 3% fluid. The impedance of 177 µm(2) gold electrodes electroplated with platinum black fabricated on these substrates is measured to be 206 kΩ at 1 kHz. Specifically, intracortical electrodes are fabricated, implanted, and used to record driven neural activity. This work describes the first substrate system that can use the full capabilities of photolithography, respond to physiological conditions by softening markedly after insertion, and record driven neural activity for 4 weeks.


Neurotoxicology | 2001

Acute Toxicity Screening of Novel AChE Inhibitors Using Neuronal Networks on Microelectrode Arrays

Edward W. Keefer; Scott J. Norton; Nicholas A. Boyle; Vincenzo Nicola Talesa; Guenter W. Gross

Spontaneously active neuronal networks grown from embryonic murine frontal cortex on substrate integrated electrode arrays with 64 recording sites were used to assess acute neurobiological and toxic effects of a series of seven symmetrical, bifunctional alkylene-linked bis-thiocarbonate compounds designed to possess anticholinesterase activity. Acute functional neurotoxicity in the absence of cytotoxicity was defined as total collapse of spontaneous activity. All of the compounds were characterized as mixed inhibitors of AChE, with K(i)s in the 10(-7)-10(-6) M range. The neuronal network assays revealed high repeatability for each compound, but surprisingly diverse effects among these closely related compounds. Six of the seven compounds produced changes in network activity at concentrations of 10-350 microM. Three of the compounds were excitatory, two were biphasic (excitatory at lower concentrations, inhibitory at higher), and one was solely inhibitory. Two of the inhibitory compounds produced irreversible inhibition of activity. Responses of cortical cultures to eserine were compared to the effects produced by the test compounds, with only one of seven providing a close match to the eserine profile. Matching of response patterns allows the classification of new drugs according to their response similarity to well-characterized agents. Spontaneously active neuronal networks reflect the interactions of multiple neurotransmitter and receptor systems, and can reveal unexpected side effects due to secondary binding. Utilizing such networks holds the promise of greater research efficiency through a more rapid recognition of physiological tissue responses.


Frontiers in Neuroengineering | 2009

Early interfaced neural activity from chronic amputated nerves

Kshitija Garde; Edward W. Keefer; B. R. Botterman; Pedro Galvan; Mario I. Romero-Ortega

Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non-restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative multi-electrode arrays of open design allow early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices.


PLOS ONE | 2008

The Neuro-Glial Properties of Adipose-Derived Adult Stromal (ADAS) Cells Are Not Regulated by Notch 1 and Are Not Derived from Neural Crest Lineage

Philip C. Wrage; Thi Tran; Khai To; Edward W. Keefer; Kelly A. Ruhn; John Hong; Supriya Hattangadi; Isaac Treviño; Malú G. Tansey

We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca2+ transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1–Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key regulator of their cellular and molecular characteristics.

Collaboration


Dive into the Edward W. Keefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Cheng

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Pancrazio

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhi Yang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

B. R. Botterman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Srikanth Vasudevan

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

David A. Stenger

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Lachapelle

Charles Stark Draper Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mario I. Romero

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge