Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward W. Yu is active.

Publication


Featured researches published by Edward W. Yu.


Journal of Bacteriology | 2005

A Periplasmic Drug-Binding Site of the AcrB Multidrug Efflux Pump: a Crystallographic and Site-Directed Mutagenesis Study

Edward W. Yu; Julio R. Aires; Gerry McDermott; Hiroshi Nikaido

The Escherichia coli AcrB multidrug efflux pump is a membrane protein that recognizes many structurally dissimilar toxic compounds. We previously reported the X-ray structures of four AcrB-ligand complexes in which the ligands were bound to the wall of the extremely large central cavity in the transmembrane domain of the pump. Genetic studies, however, suggested that discrimination between the substrates occurs mainly in the periplasmic domain rather than the transmembrane domain of the pump. We here describe the crystal structures of the AcrB mutant in which Asn109 was replaced by Ala, with five structurally diverse ligands, ethidium, rhodamine 6G, ciprofloxacin, nafcillin, and Phe-Arg-beta-naphthylamide. The ligands bind not only to the wall of central cavity but also to a new periplasmic site within the deep external depression formed by the C-terminal periplasmic loop. This depression also includes residues identified earlier as being important in the specificity. We show here that conversion into alanine of the Phe664, Phe666, or Glu673 residue in the periplasmic binding site produced significant decreases in the MIC of most agents in the N109A background. Furthermore, decreased MICs were also observed when these residues were mutated in the wild-type AcrB background, although the effects were more modest. The MIC data were also confirmed by assays of ethidium influx rates in intact cells, and our results suggest that the periplasmic binding site plays a role in the physiological process of drug efflux.


Journal of Bacteriology | 2003

AcrB Multidrug Efflux Pump of Escherichia coli: Composite Substrate-Binding Cavity of Exceptional Flexibility Generates Its Extremely Wide Substrate Specificity

Edward W. Yu; Julio R. Aires; Hiroshi Nikaido

Gram-negative bacteria have, in general, much higher intrinsic levels of resistance to various antibiotics, antiseptics, dyes, and detergents than do gram-positive bacteria. This is, in part, due to the effectiveness of the outer membrane as a barrier. The porin channels exclude large compounds (for


Nature | 2010

Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport

Feng Long; Chih-Chia Su; Michael T. Zimmermann; Kanagalaghatta R. Rajashankar; Robert L. Jernigan; Edward W. Yu

Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs—three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.


Nature | 2011

Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli

Chih-Chia Su; Feng Long; Michael T. Zimmermann; Kanagalaghatta R. Rajashankar; Robert L. Jernigan; Edward W. Yu

Gram-negative bacteria, such as Escherichia coli, expel toxic chemicals through tripartite efflux pumps that span both the inner and outer membrane. The three parts are an inner membrane, substrate-binding transporter; a membrane fusion protein; and an outer-membrane-anchored channel. The fusion protein connects the transporter to the channel within the periplasmic space. A crystallographic model of this tripartite efflux complex has been unavailable because co-crystallization of the various components of the system has proven to be extremely difficult. We previously described the crystal structures of both the inner membrane transporter CusA and the membrane fusion protein CusB of the CusCBA efflux system of E. coli. Here we report the co-crystal structure of the CusBA efflux complex, showing that the transporter (or pump) CusA, which is present as a trimer, interacts with six CusB protomers and that the periplasmic domain of CusA is involved in these interactions. The six CusB molecules seem to form a continuous channel. The affinity of the CusA and CusB interaction was found to be in the micromolar range. Finally, we have predicted a three-dimensional structure for the trimeric CusC outer membrane channel and developed a model of the tripartite efflux assemblage. This CusC3–CusB6–CusA3 model shows a 750-kilodalton efflux complex that spans the entire bacterial cell envelope and exports Cu i and Ag i ions.


Journal of Bacteriology | 2006

Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway

Chih-Chia Su; Ming Li; Ruoyu Gu; Yumiko Takatsuka; Gerry McDermott; Hiroshi Nikaido; Edward W. Yu

We previously reported the X-ray structures of wild-type Escherichia coli AcrB, a proton motive force-dependent multidrug efflux pump, and its N109A mutant. These structures presumably reflect the resting state of AcrB, which can bind drugs. After ligand binding, a proton may bind to an acidic residue(s) in the transmembrane domain, i.e., Asp407 or Asp408, within the putative network of electrostatically interacting residues, which also include Lys940 and Thr978, and this may initiate a series of conformational changes that result in drug expulsion. Herein we report the X-ray structures of four AcrB mutants, the D407A, D408A, K940A, and T978A mutants, in which the structure of this tight electrostatic network is expected to become disrupted. These mutant proteins revealed remarkably similar conformations, which show striking differences from the previously known conformations of the wild-type protein. For example, the loop containing Phe386 and Phe388, which play a major role in the initial binding of substrates in the central cavity, becomes prominently extended into the center of the cavity, such that binding of large substrate molecules may become difficult. We believe that this new conformation may mimic, at least partially, one of the transient conformations of the transporter during the transport cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Propagating conformational changes over long (and short) distances in proteins

Edward W. Yu; Daniel E. Koshland

The problem of the propagation of conformational changes over long distances or through a closely packed protein is shown to fit a model of a ligand-induced conformational change between two protein states selected by evolution. Moreover, the kinetics of the pathway between these states is also selected so that the energy of ligand binding and the speed of the transition between conformational states are physiologically appropriate. The crystallographic data of a wild-type aspartate receptor that has negative cooperativity and a mutant that has no cooperativity but has native transmembrane signaling are shown to support this model.


Journal of Molecular Biology | 2009

Crystal Structure of the Membrane Fusion Protein CusB from Escherichia coli

Chih-Chia Su; Feng Yang; Feng Long; Deepak Reyon; Mathew D. Routh; Dennis W. Kuo; Adam K. Mokhtari; Jonathan D. Van Ornam; Katherine L. Rabe; Julie A. Hoy; Young Jin Lee; Kanagalaghatta R. Rajashankar; Edward W. Yu

Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes belonging to the resistance-nodulation-division family to expel diverse toxic compounds from the cell. These systems contain a periplasmic membrane fusion protein (MFP) that is critical for substrate transport. We here present the x-ray structures of the CusB MFP from the copper/silver efflux system of E. coli. This is the first structure of any MFPs associated with heavy-metal efflux transporters. CusB bridges the inner-membrane efflux pump CusA and outer-membrane channel CusC to mediate resistance to Cu(+) and Ag(+) ions. Two distinct structures of the elongated molecules of CusB were found in the asymmetric unit of a single crystal, which suggests the flexible nature of this protein. Each protomer of CusB can be divided into four different domains, whereby the first three domains are mostly beta-strands and the last domain adopts an entirely helical architecture. Unlike other known structures of MFPs, the alpha-helical domain of CusB is folded into a three-helix bundle. This three-helix bundle presumably interacts with the periplasmic domain of CusC. The N- and C-termini of CusB form the first beta-strand domain, which is found to interact with the periplasmic domain of the CusA efflux pump. Atomic details of how this efflux protein binds Cu(+) and Ag(+) were revealed by the crystals of the CusB-Cu(I) and CusB-Ag(I) complexes. The structures indicate that CusB consists of multiple binding sites for these metal ions. These findings reveal novel structural features of an MFP in the resistance-nodulation-division efflux system and provide direct evidence that this protein specifically interacts with transported substrates.


Antimicrobial Agents and Chemotherapy | 2008

Functional Cloning and Characterization of the Multidrug Efflux Pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli

Feng Long; Corinne Rouquette-Loughlin; William M. Shafer; Edward W. Yu

ABSTRACT Active efflux of antimicrobial agents is one of the most important adapted strategies that bacteria use to defend against antimicrobial factors that are present in their environment. The NorM protein of Neisseria gonorrhoeae and the YdhE protein of Escherichia coli have been proposed to be multidrug efflux pumps that belong to the multidrug and toxic compound extrusion (MATE) family. In order to determine their antimicrobial export capabilities, we cloned, expressed, and purified these two efflux proteins and characterized their functions both in vivo and in vitro. E. coli strains expressing norM or ydhE showed elevated (twofold or greater) resistance to several antimicrobial agents, including fluoroquinolones, ethidium bromide, rhodamine 6G, acriflavine, crystal violet, berberine, doxorubicin, novobiocin, enoxacin, and tetraphenylphosphonium chloride. When they were expressed in E. coli, both transporters reduced the levels of ethidium bromide and norfloxacin accumulation through a mechanism requiring the proton motive force, and direct measurements of efflux confirmed that NorM behaves as an Na+-dependent transporter. The capacities of NorM and YdhE to recognize structurally divergent compounds were confirmed by steady-state fluorescence polarization assays, and the results revealed that these transporters bind to antimicrobials with dissociation constants in the micromolar region.


Annual review of biophysics | 2014

Bacterial multidrug efflux transporters.

Jared A. Delmar; Chih-Chia Su; Edward W. Yu

Infections caused by bacteria are a leading cause of death worldwide. Although antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in bacterial pathogens. Multidrug efflux transporters--a common and powerful resistance mechanism--are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Transporters of the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter specific to heavy metals. Here, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials.


PLOS ONE | 2014

Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.

Hsiang-Ting Lei; Tsung-Han Chou; Chih-Chia Su; Jani Reddy Bolla; Nitin Kumar; Abhijith Radhakrishnan; Feng Long; Jared A. Delmar; Sylvia V. Do; Kanagalaghatta R. Rajashankar; William M. Shafer; Edward W. Yu

Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel.

Collaboration


Dive into the Edward W. Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Long

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge