Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin C. Johnson is active.

Publication


Featured researches published by Edwin C. Johnson.


Neuropharmacology | 1999

2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist.

Fabrizio Gasparini; Kurt Lingenhöhl; Natacha Stoehr; Peter J. Flor; Micheline Heinrich; Ivo Vranesic; Michel Biollaz; Hans Allgeier; Roland Heckendorn; Stephan Urwyler; Mark A. Varney; Edwin C. Johnson; Stephen D. Hess; Sara P. Rao; Aida I. Sacaan; Emily M. Santori; Gönül Veliçelebi; Rainer Kuhn

In the present paper we describe 2-methyl-6-(phenylethynyl)-pyridine (MPEP) as a potent, selective and systemically active antagonist for the metabotropic glutamate receptor subtype 5 (mGlu5). At the human mGlu5a receptor expressed in recombinant cells, MPEP completely inhibited quisqualate-stimulated phosphoinositide (PI) hydrolysis with an IC50 value of 36 nM while having no agonist or antagonist activities at cells expressing the human mGlu1b receptor at concentrations up to 30 microM. When tested at group II and III receptors, MPEP did not show agonist or antagonist activity at 100 microM on human mGlu2, -3, -4a, -7b, and -8a receptors nor at 10 microM on the human mGlu6 receptor. Electrophysiological recordings in Xenopus laevis oocytes demonstrated no significant effect at 100 microM on human NMDA (NMDA1A/2A), rat AMPA (Glu3-(flop)) and human kainate (Glu6-(IYQ)) receptor subtypes nor at 10 microM on the human NMDA1A/2B receptor. In rat neonatal brain slices, MPEP inhibited DHPG-stimulated PI hydrolysis with a potency and selectivity similar to that observed on human mGlu receptors. Furthermore, in extracellular recordings in the CA1 area of the hippocampus in anesthetized rats, the microiontophoretic application of DHPG induced neuronal firing that was blocked when MPEP was administered by iontophoretic or intravenous routes. Excitations induced by microiontophoretic application of AMPA were not affected.


The Journal of Neuroscience | 1999

Functional Consequences of Mutations in the Human α1A Calcium Channel Subunit Linked to Familial Hemiplegic Migraine

Michael Hans; Siro Luvisetto; Mark E. Williams; Michele Spagnolo; Arturo Urrutia; Angelita Tottene; Paul Brust; Edwin C. Johnson; Michael Miller Harpold; Kenneth Stauderman; Daniela Pietrobon

Mutations in α1A, the pore-forming subunit of P/Q-type calcium channels, are linked to several human diseases, including familial hemiplegic migraine (FHM). We introduced the four missense mutations linked to FHM into human α1A-2subunits and investigated their functional consequences after expression in human embryonic kidney 293 cells. By combining single-channel and whole-cell patch-clamp recordings, we show that all four mutations affect both the biophysical properties and the density of functional channels. Mutation R192Q in the S4 segment of domain I increased the density of functional P/Q-type channels and their open probability. Mutation T666M in the pore loop of domain II decreased both the density of functional channels and their unitary conductance (from 20 to 11 pS). Mutations V714A and I1815L in the S6 segments of domains II and IV shifted the voltage range of activation toward more negative voltages, increased both the open probability and the rate of recovery from inactivation, and decreased the density of functional channels. Mutation V714A decreased the single-channel conductance to 16 pS. Strikingly, the reduction in single-channel conductance induced by mutations T666M and V714A was not observed in some patches or periods of activity, suggesting that the abnormal channel may switch on and off, perhaps depending on some unknown factor. Our data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.


Neuropharmacology | 2001

Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain

K Walker; M Bowes; M Panesar; A Davis; C Gentry; A Kesingland; Fabrizio Gasparini; Will Spooren; Natacha Stoehr; Adriana Pagano; Peter J. Flor; Ivo Vranesic; Kurt Lingenhoehl; Edwin C. Johnson; Mark A. Varney; Laszlo Urban; Rainer Kuhn

The excitatory neurotransmitter, glutamate, is particularly important in the transmission of pain information in the nervous system through the activation of ionotropic and metabotropic glutamate receptors. A potent, subtype-selective antagonist of the metabotropic glutamate-5 (mGlu5) receptor, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has now been discovered that has effective anti-hyperalgesic effects in models of inflammatory pain. MPEP did not affect rotarod locomotor performance, or normal responses to noxious mechanical or thermal stimulation in naïve rats. However, in models of inflammatory pain, systemic administration of MPEP produced effective reversal of mechanical hyperalgesia without affecting inflammatory oedema. In contrast to the non-steroidal anti-inflammatory drugs, indomethacin and diclofenac, the maximal anti-hyperalgesic effects of orally administered MPEP were observed without acute erosion of the gastric mucosa. In contrast to its effects in models of inflammatory pain, MPEP did not produce significant reversal of mechanical hyperalgesia in a rat model of neuropathic pain.


Neuropharmacology | 1993

Human neuronal voltage-dependent calcium channels: studies on subunit structure and role in channel assembly.

Paul Brust; Susan Simerson; Ann F. McCue; Charles R. Deal; Susan Schoonmaker; Mark E. Williams; Gonul Velicelebi; Edwin C. Johnson; Michael Miller Harpold

Voltage-dependent calcium (Ca2+) channels, expressed in the CNS, appear to be multimeric complexes comprised of at least alpha 1, alpha 2 and beta subunits. Previously, we cloned and expressed human neuronal alpha 1, alpha 2 and beta subunits to study recombinant channel complexes that display properties of those expressed in vivo. The alpha 1B-mediated channel subtype binds omega-conotoxin (CgTx) GVIA with high affinity and exhibits properties of N-type voltage-dependent Ca2+ channels. Here we describe several alpha 2 and beta splice variants and report results on the expression of omega-CgTx GVIA binding sites, assembly of the subunit complex and biophysical function of alpha 1B-mediated channel complexes containing some of these splice variants. We optimized recombinant expression in human embryonic kidney (HEK) 293 cells of alpha 1B alpha 2b beta 1 subunit complexes by controlling the expression levels of subunit mRNAs and monitored cell surface expression by binding of omega-CgTx GVIA to the alpha 1B subunit. Co-expression of either alpha 2b or beta 1 subunits with an alpha 1B subunit increased expression of binding sites while the most efficient expression was achieved when both alpha 2b and beta 1 subunits were co-expressed with an alpha 1B subunit. The presence of alpha 2b affects the affinity of omega-CgTx GVIA binding and barium (Ba2+) current magnitudes, although it does not appear to alter kinetic properties of the Ba2+ current. This is the first evidence of an alpha 2 subunit modulating the binding affinity of a cell-surface Ca2+ channel ligand. Our results demonstrate that alpha 1, alpha 2 and beta subunits together contribute to the efficient assembly and functional expression of voltage-dependent Ca2+ channel complexes.


Journal of Molecular Neuroscience | 1996

Comparative structure of human neuronal α2–α7 and β2–β4 nicotinic acetylcholine receptor subunits and functional expression of the α2, α3, α4, α7, β2, and β4 subunits

Kathryn J. Elliott; Steven B. Ellis; Kelly J. Berckhan; Arturo Urrutia; Laura E. Chavez-Noriega; Edwin C. Johnson; Gonul Velicelebi; Michael Miller Harpold

AbstractcDNA clones encoding human neuronal nicotinic acetylcholine receptor α2, α3, α4, α5, α6, α7, β2, β3, and β4 subunits were isolated from brainstem, hippocampus, prefrontal cortex, substantia nigra, thalamus, and IMR32 libraries. Human α2 and α6 and full-length β3 and β4 clones have not been previously reported. Deduced amino acid sequences of the α2, α6, β3, and β4 predicted mature peptides are 503 residues (56.9 kDa), 464 residues (53.7 kDa), 440 residues (50.8 kDa), and 477 residues (54.1 kDa), respectively. These sequences show 84 (α2), 87 (α6), 89 (β3), and 84% (β4) identity to the corresponding rat sequences. The amino termini of the human α2 and β3 mature peptides contain 23 and six additional residues, respectively, compared to those of rat α2 and β3. Recombinant receptors were expressed inXenopus laevis oocytes injected with in vitro transcripts encoding either α7 alone or α2, α3, or α4 in pairwise combination with β2 or β4. Inward currents were elicited by the application of acetylcholine (1–100 µM) and other agonists; these responses were blocked 65–97% by application of 10 µM d-tubocurare, confirming functional expression of human nicotinic receptors.


Neuropharmacology | 1995

Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5.

Lorrie P. Daggett; Aida I. Sacaan; M. Akong; Sara P. Rao; Stephen D. Hess; C. Liaw; A. Urrutia; C. Jachec; S.B. Ellis; J. Dreessen; Thomas Knöpfel; G.B. Landwehrmeyer; Claudia M. Testa; Anne B. Young; Mark A. Varney; Edwin C. Johnson; G. Veliçelebi

We have isolated and characterized overlapping cDNAs that encode two isoforms of the human metabotropic glutamate receptor subtype 5 (hmGluR5). The deduced amino acid sequences of human and rat mGluR5a are 94.5% identical. However, a region in the putative cytoplasmic domain (SER926-ALA1121) displays significant sequence divergence. Genomic analysis of this region showed that the sequence divergence results from species-specific differences in the genomic sequences, not from alternative splicing. The distribution of mGluR5 mRNA in human brain was most strongly detected throughout the hippocampus, with moderate levels in the caudate-putamen, cerebral cortex, thalamus, and deep cerebellar nuclei, and at low levels in the cerebellar cortex. Activation of both hmGluR5a and hmGluR5b transiently expressed in Xenopus oocytes and HEK293 cells was coupled to inositol phosphate (InsP) formation and elevation of the intracellular free calcium ([Ca2+]i). The agonist rank order of potency for activating recombinant hmGluR5a receptors in either system was quisqualate > L-glutamate > 1S,3R-ACPD. Both the quisqualate stimulated InsP and [Ca2+]i were inhibited by (+)-MCPG. Recombinant human mGluR5a was also stably expressed in mouse fibroblast Ltk- cells, in which the efficacy and potency of quisqualate were unchanged for more than 30 cell passages.


Neuropharmacology | 1995

Characteristics of a human N-type calcium channel expressed in HEK293 cells

David Bleakman; D. Bowman; C.P. Bath; Paul Brust; Edwin C. Johnson; Charles R. Deal; Richard J. Miller; S.B. Ellis; Michael Miller Harpold; M. Hans; C.J. Grantham

The human alpha 1B-1 alpha 2b beta 1-2 Ca2+ channel was stably expressed in HEK293 cells producing a human brain N-type voltage-dependent calcium channel (VDCC). Whole cell voltage-clamp electrophysiology and fura-2 based microfluorimetry have been used to study its characteristics. Calcium currents (ICa) recorded in transfected HEK293 cells were activated at potentials more depolarized than -20 mV with peak currents occurring at approx + 10 mV in 5 mM extracellular CaCl2. ICa and associated rises in intracellular free calcium concentrations ([Ca2+]i) were sensitive to changes in both the [Ca2+]o and holding potential. Steady-state inactivation was half maximal at a holding potential of -60 mV. Ba2+ was a more effective charge carrier than Ca2+ through the alpha 1B-1 alpha 2b beta 1-2 Ca2+ channel and combinations of both Ba2+ and Ca2+ as charge carriers resulted in the anomalous mole fraction effect. Ca2+ influx into transfected HEK293 cells was irreversibly inhibited by omega-conotoxin-GVIA (omega-CgTx-GVIA; 10 nM-1 microM) and omega-conotoxin-MVIIA; 100 nM-1 microM) whereas 1 microM) whereas no reductions were seen with agents which block P or L-type Ca2+ channels. The inorganic ions, gadolinium (Gd3+), cadmium (Cd2+) and nickel (Ni2+) reduced the ICa under voltage-clamp conditions in a concentration-dependent manner. The order of potency of the three ions was Gd3+ > Cd2+ > Ni2+. These experiments suggest that the cloned and expressed alpha 1B-1 alpha 2b beta 1-2 Ca2+ channel subunits form channels in HEK293 cells that exhibit properties consistent with the activity of the native-N-type VDCC previously described in neurons.


Journal of Biological Chemistry | 1997

Functional Coupling of a Human Retinal Metabotropic Glutamate Receptor (hmGluR6) to Bovine Rod Transducin and Rat Go in an in Vitro Reconstitution System

Ke Weng; C.-C. Lu; Lorrie P. Daggett; Rainer Kuhn; Peter J. Flor; Edwin C. Johnson; Phyllis R. Robinson

The cDNA encoding hmGluR6, appended with a 15-amino acid antibody epitope (1D4), was transiently transfected in COS-7 cells. The receptor was purified from COS cell membranes using an antibody affinity column. The purified receptor was then reconstituted into lipid vesicles, and its ability to activate either transducin, the rod photoreceptor-specific GTP-binding protein, or the α subunit of Go was assayed in vitro using a guanosine 5′-3-O-(thio)triphosphate binding assay. Activation of both transducin and Go was observed. The rate of Goactivation was 18-fold greater than the rate of transducin activation. This indicates that the coupling of mGluR6 to Go is more efficient and suggests that Go may be involved in coupling to mGluR6 in ON-bipolar cells.


Journal of Pharmacology and Experimental Therapeutics | 2009

The Neuroactive Peptide N-Acetylaspartylglutamate Is Not an Agonist at the Metabotropic Glutamate Receptor Subtype 3 of Metabotropic Glutamate Receptor

Maninder Chopra; Yi Yao; Timothy Blake; David R. Hampson; Edwin C. Johnson

The peptide N-acetylaspartylglutamate (NAAG) is present in high concentrations in the mammalian central nervous system. Various mechanisms have been proposed for its action, including selective activation of the metabotropic glutamate receptor (mGluR) subtype 3, its action at the N-methyl-d-aspartate receptor, or the production of glutamate by its hydrolysis catalyzed by an extracellular protease. To re-examine its agonist activity at mGluR3, we coexpressed human or rat mGluR3 with G protein inward rectifying channels in Xenopus laevis oocytes. High-performance liquid chromatography analysis of commercial sources of NAAG showed 0.38 to 0.48% glutamate contamination. Although both human and rat mGluR3 were highly sensitive to glutamate, with EC50 values of 58 and 28 nM, respectively, purified NAAG (100 μM) had little activity (7.7% of full activation by glutamate). Only in the millimolar range did it show significant activity, possibly due to residual traces of glutamate remaining in the purified NAAG preparations. In contrast, the unpurified NAAG sample did produce a full agonist response with mGluR3 coexpressed with Gα15, with an EC50 of 120 μM, as measured by a calcium release assay. This response can be explained by the 0.38 to 0.48% glutamate contamination. Our results suggest that NAAG may not have a direct agonist activity at the mGluR3 receptor. Thus, several in vivo and in vitro published results that did not address the issue of glutamate contamination of NAAG preparations may need to be re-evaluated.


Journal of Neurochemistry | 2002

Functional Characterization of Human N‐Methyl‐d‐Aspartate Subtype 1A/2D Receptors

Stephen D. Hess; Lorrie P. Daggett; Charles R. Deal; Chin-Chun Lu; Edwin C. Johnson; Gonul Velicelebi

Abstract: The human NMDAR2D subunit was cloned, and the pharmacological properties of receptors resulting from injection of transcripts encoding human NMDAR1A and NMDAR2D subunits in Xenopus oocytes were characterized by profiling NMDA receptor agonists and antagonists. We found that glutamate, NMDA, glycine, and d‐serine were significantly more potent on hNMDAR1A/2D than on hNMDAR1A/2A or hNMDAR1A/2B. Also, the potencies of NMDA and glycine were higher for hNMDAR1A/2D than for hNMDAR1A/2C. Ifenprodil was more potent at hNMDAR1A/2B than at hNMDAR1A/2D, whereas 5,7‐dichlorokynurenate was more potent at hNMDAR1A/2A than at hNMDAR1A/2D. As measured in transiently transfected human embryonic kidney 293 cells, the maximal inward current in the presence of external Mg2+ occurred at −40 mV, and full block was not observed at negative potentials. Kinetic measurements revealed that the higher affinity of hNMDAR1A/2D for both glutamate and glycine relative to hNMDAR1A/2A and hNMDA1A/2B can be explained by slower dissociation of each agonist from hNMDAR1A/2D. The hNMDAR1A/2D combination represents a pharmacologically and functionally distinct receptor subtype and may constitute a potentially important target for therapeutic agents active in the human CNS.

Collaboration


Dive into the Edwin C. Johnson's collaboration.

Top Co-Authors

Avatar

Mark A. Varney

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Gonul Velicelebi

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Miller Harpold

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aida I. Sacaan

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge