Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin Haas is active.

Publication


Featured researches published by Edwin Haas.


Global Biogeochemical Cycles | 2007

A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model

Christian Werner; Klaus Butterbach-Bahl; Edwin Haas; Thomas Hickler; Ralf Kiese

Beside agricultural soils, tropical rainforest soils are the main source of atmospheric N2O. Current estimates of the global N2O source strength of tropical rainforest soils are still based on rather simplistic upscaling approaches and do have a large range of uncertainty. In this study, the biogeochemical ForestDNDC-tropica model was recalibrated and intensively tested on the site scale prior to inventory calculations. For this, the model was coupled to a newly developed global GIS database holding relevant information on model initialization and driving parameters in 0.25 degrees x 0.25 degrees resolution. On average, the mean annual N2O emission source strength of rainforests ecosystems worldwide for the 10-year-period 1991-2000 was calculated to be 1.2 kg N2O-N ha(-1) yr(-1). Using a total rainforest area of 10.9 x 10(6) km(2), this amounts to a total source strength of 1.34 Tg N yr(-1). The result of an initialization parameter uncertainty assessment using Latin Hypercube sampling revealed that the global source strength of N2O emissions from tropical rainforests may range from 0.88 to 2.37 Tg N yr(-1). Our calculations also show that N2O emissions do vary substantially on spatial and temporal scales. Regional differences were mainly caused by differences in soil properties, whereas the pronounced seasonal and interannual variability was driven by climate variability. Our work shows that detailed biogeochemical models are a valuable tool for assessing biosphere-atmosphere exchange even on a global scale. However, further progress and a narrowing of the uncertainty range do crucially depend on the availability of more detailed field measurements for model testing and an improvement of the quality of spatial data sets on soil and vegetation properties. (Less)


Landscape Ecology | 2013

LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale

Edwin Haas; Steffen Klatt; Alexander Fröhlich; Philipp Kraft; Christian Werner; Ralf Kiese; Rüdiger Grote; Lutz Breuer; Klaus Butterbach-Bahl

We present a new model system, which facilitates scaling of ecosystem processes from the site to regional simulation domains. The new framework LandscapeDNDC—partly based on the biogeochemical site scale model DNDC—inherits a series of new features with regard to process descriptions, model structure and data I/O functionality. LandscapeDNDC incorporates different vegetation types and management systems for simulating carbon, nitrogen and water related biosphere–atmosphere–hydrosphere fluxes in forest, arable and grassland ecosystems and allows the dynamic simulation of land use changes. The modeling concept divides ecosystems into six substates (canopy air chemistry, microclimate, physiology, water cycle, vegetation structure, and soil biogeochemistry) and provides alternative modules dealing with these substates. The model can be applied on the site scale, as well as for three-dimensional regional simulations. For regional applications LandscapeDNDC integrates all grid cells synchronously forward in time. This allows easy coupling to other spatially distributed models (e.g. for hydrology or atmospheric chemistry) and efficient two-way exchange of states. This paper describes the fundamental design concept of the model and its object-oriented software implementation. Two example applications are presented. First, calculation of a nitrous oxide emission inventory from agricultural soils for the State of Saxaony (Germany), including data preprocessing of the regional model input data. The computational effort for the LandscapeDNDC preprocessing and simulation could be speed up by a factor of almost 100 compared to the approach using the original DNDC version 9.3. Calculated N2O emissions for Saxony with LandscapeDNDC (2693 t N2O–N/a) were compared with the original DNDC model (2725 t N2O–N/a), the IPCC Tier I methodology (1107 t N2O–N/a), and the German National Inventory Report (equal to IPCC Tier II, 2100 t N2O–N/a). The second example illustrates the capabilities of LandscapeDNDC for building a fully coupled three-dimensional model system on the landscape scale. Therefore we coupled the biogeochemical and plant growth calculations to a hydrological transport model and demonstrate the transport of nitrogen along a virtual hillslope and associated formation of indirect nitrous oxide emissions.


Plant and Soil | 2015

A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems

David Kraus; Sebastian Weller; Steffen Klatt; Edwin Haas; Reiner Wassmann; Ralf Kiese; Klaus Butterbach-Bahl

Background and aimsReplacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present.MethodsA new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments.ResultsThe model simulations agree well with observed dynamics of CH4 emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N2O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models.ConclusionsLandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.


Gcb Bioenergy | 2012

Biomass production potential from Populus short rotation systems in Romania

Christian Werner; Edwin Haas; Rüdiger Grote; Martin Gauder; Simone Graeff-Hönninger; Wilhelm Claupein; Klaus Butterbach-Bahl

The aim of this study was to assess the potential of biomass production by short rotation poplar in Romania without constraining agricultural food production. Located in the eastern part of Europe, Romania provides substantial land resources suitable for bioenergy production. The process‐oriented biogeochemical model Landscape DNDC was used in conjunction with the forest‐growth model PSIM to simulate the yield of poplar grown in short‐rotation coppice at different sites in Romania. The model was validated on five sites with different climatic conditions in Central Europe. Using regional site conditions, with climatic parameters and organic carbon content in soil being the most important, the biomass production potential of poplar plantations was simulated for agricultural areas across Romania.


Science of The Total Environment | 2016

A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC

Saúl Molina-Herrera; Edwin Haas; Steffen Klatt; David Kraus; Jürgen Augustin; Vincenzo Magliulo; Tiphaine Tallec; Eric Ceschia; C. Ammann; Benjamin Loubet; U. Skiba; S.K. Jones; Christian Brümmer; Klaus Butterbach-Bahl; Ralf Kiese

The identification of site-specific agricultural management practices in order to maximize yield while minimizing environmental nitrogen losses remains in the center of environmental pollution research. Here, we used the biogeochemical model LandscapeDNDC to explore different agricultural practices with regard to their potential to reduce soil N2O emissions and NO3 leaching while maintaining yields. In a first step, the model was tested against observations of N2O emissions, NO3 leaching, soil micrometeorology as well as crop growth for eight European cropland and grassland sites. Across sites, LandscapeDNDC predicts very well mean N2O emissions (r(2)=0.99) and simulates the magnitude and general temporal dynamics of soil inorganic nitrogen pools. For the assessment of site-specific mitigation potentials of environmental nitrogen losses a Monte Carlo optimization technique considering different agricultural management options (i.e., timing of planting, harvest and fertilization, amount of applied fertilizer as well as residue management) was used. The identified optimized field management practices reduce N2O emissions and NO3 leaching from croplands on average by 21% and 31%, respectively. Likewise, average reductions of 55% for N2O emissions and 16% for NO3 leaching are estimated for grasslands. For mitigating environmental loss - while maintaining yield levels - it was most important to reduce fertilizer application rates by in average 10%. Our analyses indicate that yield scaled N2O emissions and NO3 leaching indicate possible improvements of nitrogen use efficiencies in European farming systems. Moreover, the applied optimization approach can be used also in a prognostic way to predict optimal timings and fertilization options (rates and splitting) upon accurate weather forecasts combined with the knowledge of modeled soil nutrient availability and plant nitrogen demand.


Science of The Total Environment | 2015

Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea

Youngsun Kim; Youngho Seo; David Kraus; Steffen Klatt; Edwin Haas; John Tenhunen; Ralf Kiese

Considering intensive agricultural management practices and environmental conditions, the LandscapeDNDC model was applied for simulation of yields, N2O emission and nitrate leaching from major upland crops and temperate deciduous forest of the Haean catchment, South Korea. Fertilization rates were high (up to 314 kg N ha(-1) year(-1)) and resulted in simulated direct N2O emissions from potato, radish, soybean and cabbage fields of 1.9 and 2.1 kg N ha(-1) year(-1) in 2009 and 2010, respectively. Nitrate leaching was identified as the dominant pathway of N losses in the Haean catchment with mean annual rates of 112.2 and 125.4 kg N ha(-1) year(-1), causing threats to water quality and leading to substantial indirect N2O emissions of 0.84 and 0.94 kg N ha(-1) year(-1) in 2009 and 2010 as estimates by applying the IPCC EF5. Simulated N2O emissions from temperate deciduous forest were low (approx. 0.50 kg N ha(-1) year(-1)) and predicted nitrate leaching rates were even negligible (≤0.01 kg N ha(-1) year(-1)). On catchment scale more than 50% of the total N2O emissions and up to 75% of nitrate leaching originated from fertilized upland fields, only covering 24% of the catchment area. Taking into account area coverage of simulated upland crops and other land uses these numbers agree well with nitrate loads calculated from discharge and concentration measurements at the catchment outlet. The change of current agricultural management practices showed a high potential of reducing N2O emission and nitrate leaching while maintaining current crop yields. Reducing (39%) and splitting N fertilizer application into 3 times was most effective and lead to about 54% and 77% reducing of N2O emission and nitrate leaching from the Haean catchment, the latter potentially contributing to improved water quality in the Soyang River Dam, which is the major source of drinking water for metropolitan residents.


Bulletin of the American Meteorological Society | 2017

The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory

Bart Wolf; Christian Chwala; Benjamin Fersch; Jakob Garvelmann; W. Junkermann; Matthias Zeeman; Andreas Angerer; Bianca Adler; Christoph Beck; Caroline Brosy; Peter Brugger; Stefan Emeis; Michael Dannenmann; Frederik De Roo; Eugenio Díaz-Pinés; Edwin Haas; Martin Hagen; Irena Hajnsek; Jucundus Jacobeit; Thomas Jagdhuber; N. Kalthoff; Ralf Kiese; Harald Kunstmann; Oliver Kosak; Ronald Krieg; Carsten Malchow; Matthias Mauder; Ralf Merz; Claudia Notarnicola; Andreas Philipp

AbstractScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and...


Gcb Bioenergy | 2017

Nitrate leaching and soil nitrous oxide emissions diminish with time in a hybrid poplar short-rotation coppice in southern Germany

Eugenio Díaz-Pinés; Saúl Molina-Herrera; Michael Dannenmann; Judith Braun; Edwin Haas; Georg Willibald; Cristina Arias-Navarro; Rüdiger Grote; Benjamin Wolf; Gustavo Saiz; Cisco Aust; Jörg-Peter Schnitzler; Klaus Butterbach-Bahl

Hybrid poplar short‐rotation coppices (SRC) provide feedstocks for bioenergy production and can be established on lands that are suboptimal for food production. The environmental consequences of deploying this production system on marginal agricultural land need to be evaluated, including the investigation of common management practices i.e., fertilization and irrigation. In this work, we evaluated (1) the soil‐atmosphere exchange of carbon dioxide, methane, and nitrous oxide (N2O); (2) the changes in soil organic carbon (SOC) stocks; (3) the gross ammonification and nitrification rates; and (4) the nitrate leaching as affected by the establishment of a hybrid poplar SRC on a marginal agricultural land in southern Germany. Our study covered one 3‐year rotation period and 2 years after the first coppicing. We combined field and laboratory experiments with modeling. The soil N2O emissions decreased from 2.2 kg N2O‐N ha−1 a−1 in the year of SRC establishment to 1.1–1.4 kg N2O‐N ha−1 a−1 after 4 years. Likewise, nitrate leaching reduced from 13 to 1.5–8 kg N ha−1 a−1. Tree coppicing induced a brief pulse of soil N2O flux and marginal effects on gross N turnover rates. Overall, the N losses diminished within 4 years by 80% without fertilization (irrespective of irrigation) and by 40% when 40–50 kg N ha−1 a−1 were applied. Enhanced N losses due to fertilization and the minor effect of fertilization and irrigation on tree growth discourage its use during the first rotation period after SRC establishment. A SOC accrual rate of 0.4 Mg C ha−1 a−1 (uppermost 25 cm, P = 0.2) was observed 5 years after the SRC establishment. Overall, our data suggest that SRC cultivation on marginal agricultural land in the region is a promising option for increasing the share of renewable energy sources due to its net positive environmental effects.


Gcb Bioenergy | 2017

Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany

Janine Schweier; Saúl Molina-Herrera; Andrea Ghirardo; Rüdiger Grote; Eugenio Díaz-Pinés; Jürgen Kreuzwieser; Edwin Haas; Klaus Butterbach-Bahl; Heinz Rennenberg; Jörg-Peter Schnitzler; Gero Becker

For avoiding competition with food production, marginal land is economically and environmentally highly attractive for biomass production with short‐rotation coppices (SRCs) of fast‐growing tree species such as poplars. Herein, we evaluated the environmental impacts of technological, agronomic, and environmental aspects of bioenergy production from hybrid poplar SRC cultivation on marginal land in southern Germany. For this purpose, different management regimes were considered within a 21‐year lifetime (combining measurements and modeling approaches) by means of a holistic Life Cycle Assessment (LCA). We analyzed two coppicing rotation lengths (7 × 3 and 3 × 7 years) and seven nitrogen fertilization rates and included all processes starting from site preparation, planting and coppicing, wood chipping, and heat production up to final stump removal. The 7‐year rotation cycles clearly resulted in higher biomass yields and reduced environmental impacts such as nitrate (NO3) leaching and soil nitrous oxide (N2O) emissions. Fertilization rates were positively related to enhanced biomass accumulation, but these benefits did not counterbalance the negative impacts on the environment due to increased nitrate leaching and N2O emissions. Greenhouse gas (GHG) emissions associated with the heat production from poplar SRC on marginal land ranged between 8 and 46 kg CO2‐eq. GJ−1 (or 11–57 Mg CO2‐eq. ha−1). However, if the produced wood chips substitute oil heating, up to 123 Mg CO2‐eq. ha−1 can be saved, if produced in a 7‐year rotation without fertilization. Dissecting the entire bioenergy production chain, our study shows that environmental impacts occurred mainly during combustion and storage of wood chips, while technological aspects of establishment, harvesting, and transportation played a negligible role.


International Journal of Environment and Pollution | 2010

Application and intercomparison of the RADM2 and RACM chemistry mechanism including a new isoprene degradation scheme within the regional meteorology-chemistry-model MCCM

Edwin Haas; Renate Forkel; Peter Suppan

The huge number of species and reactions involved in the degradation of organic compounds does not permit explicit treatment in regional models, the use of condensed mechanisms is necessary. With increased knowledge about biogenic VOC chemistry, updates of the organic chemistry have become necessary. Geiger et al. (2003) introduced a RACM mechanism with improved isoprene and biogenic VOC chemistry. To understand the mechanisms, case studies were performed: A box-model-intercomparison and MCCM (Grell et al., 2000) cross-validations. Focusing on ozone, differences were rather small. In the regional applications, RADM2 produced the highest daily ozone concentrations. Intercomparisons with measurements result in good correlation.

Collaboration


Dive into the Edwin Haas's collaboration.

Top Co-Authors

Avatar

Klaus Butterbach-Bahl

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Klatt

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David Kraus

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Werner

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge