Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin J.A. Veldhuizen is active.

Publication


Featured researches published by Edwin J.A. Veldhuizen.


Applied and Environmental Microbiology | 2007

Carvacrol Induces Heat Shock Protein 60 and Inhibits Synthesis of Flagellin in Escherichia coli O157:H7

Sara A. Burt; Ruurd van der Zee; Ad P. Koets; Anko M. de Graaff; Frans van Knapen; Wim Gaastra; Henk P. Haagsman; Edwin J.A. Veldhuizen

ABSTRACT The essential oils of oregano and thyme are active against a number of food-borne pathogens, such as Escherichia coli O157:H7. Carvacrol is one of the major antibacterial components of these oils, and p-cymene is thought to be its precursor in the plant. The effects of carvacrol and p-cymene on protein synthesis in E. coli O157:H7 ATCC 43895 cells were investigated. Bacteria were grown overnight in Mueller-Hinton broth with a sublethal concentration of carvacrol or p-cymene, and their protein compositions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by Western blotting. The presence of 1 mM carvacrol during overnight incubation caused E. coli O157:H7 to produce significant amounts of heat shock protein 60 (HSP60) (GroEL) (P < 0.05) and inhibited the synthesis of flagellin highly significantly (P < 0.001), causing cells to be aflagellate and therefore nonmotile. The amounts of HSP70 (DnaK) were not significantly affected. p-Cymene at 1 mM or 10 mM did not induce HSP60 or HSP70 in significant amounts and did not have a significant effect on flagellar synthesis. Neither carvacrol (0.3, 0.5, 0.8, or 1 mM) nor p-cymene (0.3, 0.5, or 0.8 mM) treatment of cells in the mid-exponential growth phase induced significant amounts of HSP60 or HSP70 within 3 h, although numerical increases of HSP60 were observed. Motility decreased with increasing concentrations of both compounds, but existing flagella were not shed. This study is the first to demonstrate that essential oil components induce HSP60 in bacteria and that overnight incubation with carvacrol prevents the development of flagella in E. coli O157:H7.


Journal of Food Protection | 2005

Increase in Activity of Essential Oil Components Carvacrol and Thymol against Escherichia coli O157:H7 by Addition of Food Stabilizers

Sara A. Burt; René Vlielander; Henk P. Haagsman; Edwin J.A. Veldhuizen

The major components of oregano and thyme essential oils that had previously been shown to inhibit Escherichia coli O157:H7 were determined by high-performance liquid chromatography with UV detection and liquid chromatographic tandem mass spectrometry. The MICs and MBCs of carvacrol, thymol, p-cymene, and gamma-terpinene against a strain of E. coli O157: H7 phage type 34 isolated from bovine feces were determined by microdilution assay. The constituents were then tested in checkerboard assays to detect possible interactions. Carvacrol and thymol displayed bacteriostatic and bactericidal properties with MICs of 1.2 mmol/liter and were additive in combination. p-Cymene and gamma-terpinene displayed no measurable antibacterial activity up to 50 mmol/liter, and neither influenced the activity of carvacrol or thymol. Growth curves in the presence of nonlethal concentrations of carvacrol with the addition of agar (0.05%, wt/vol) or carrageenan (0.125%, wt/vol) as stabilizer were produced by optical density measurement. The stabilizers agar and carrageenan both significantly improved the effectiveness of carvacrol in broth, possibly because of a delay in the separation of the hydrophobic substrate from the aqueous phase of the medium. When carvacrol was dissolved in ethanol before addition to broth, stabilizers were not needed. Carvacrol and thymol, particularly when used in combination with a stabilizer or in an ethanol solution, may be effective in reducing the number or preventing growth of E. coli O157:H7 in liquid foods.


Critical Reviews in Microbiology | 2014

Synergy between essential oil components and antibiotics: a review.

Wendy T. Langeveld; Edwin J.A. Veldhuizen; Sara A. Burt

Abstract With the increase in antibiotic-resistant bacteria and the lack of new antibiotics being brought onto the market, alternative strategies need to be found to cope with infections resulting from drug-resistant bacteria. A possible solution may be to combine existing antibiotics with phytochemicals to enhance the efficacy of antibiotics. A group of phytochemicals that is said to have such effects, according to in vitro studies, is essential oils (EOs) and their components. Amongst others, EOs containing carvacrol, cinnamaldehyde, cinnamic acid, eugenol and thymol can have a synergistic effect in combination with antibiotics. Several modes of action have been put forward by which antibiotics and the essential oil components may act synergistically, such as by affecting multiple targets; by physicochemical interactions and inhibiting antibacterial-resistance mechanisms. Many reported assays show additivity or moderate synergism, indicating that EOs may offer possibilities for reducing antibiotic use.


Biochimica et Biophysica Acta | 2000

Role of pulmonary surfactant components in surface film formation and dynamics

Edwin J.A. Veldhuizen; Henk P. Haagsman

Pulmonary surfactant is a mixture of lipids and proteins which is secreted by the epithelial type II cells into the alveolar space. Its main function is to reduce the surface tension at the air/liquid interface in the lung. This is achieved by forming a surface film that consists of a monolayer which is highly enriched in dipalmitoylphosphatidylcholine and bilayer lipid/protein structures closely attached to it. The molecular mechanisms of film formation and of film adaptation to surface changes during breathing in order to remain a low surface tension at the interface, are unknown. The results of several model systems give indications for the role of the surfactant proteins and lipids in these processes. In this review, we describe and compare the model systems that are used for this purpose and the progress that has been made. Despite some conflicting results using different techniques, we conclude that surfactant protein B (SP-B) plays the major role in adsorption of new material into the interface during inspiration. SP-Cs main functions are to exclude non-DPPC lipids from the interface during expiration and to attach the bilayer structures to the lipid monolayer. Surfactant protein A (SP-A) appears to promote most of SP-Bs functions. We describe a model proposing that SP-A and SP-B create DPPC enriched domains which can readily be adsorbed to create a DPPC-rich monolayer at the interface. Further enrichment in DPPC is achieved by selective desorption of non-DPPC lipids during repetitive breathing cycles.


Neonatology | 2008

Surfactant collectins and innate immunity.

Henk P. Haagsman; Astrid Hogenkamp; Martin van Eijk; Edwin J.A. Veldhuizen

Respiratory pathogens encounter various lines of defenses before infection of the host is established. The innate immune response represents an important first-line protection mechanism against potentially pathogenic microorganisms during early stages of infection of the naive host. Important players in this host defense system are ‘collectins’, a class of soluble innate immune proteins. Well-characterized members of the collectin family are the surfactant proteins A (SP-A) and D (SP-D). These collectins are expressed in the lung and also in extrapulmonary mucosal tissues. Collectins are secreted as multimers resulting in trimeric clustering of the lectin domains which enables recognition of evolutionary conserved sugar patterns present on the surface of a large variety of pathogens. Binding to collectins may lead to direct agglutination and neutralization of pathogens, to opsonization in order to present bound microbes directly to phagocytes, to modulation of the inflammatory response and to regulation of dendritic cell and T cell functions. In pulmonary tissue, this early acute-phase-like response can be regarded as a crucial layer of protection against a vast array of pathogens that escape the physical barriers and threaten to infect the delicate respiratory epithelium. An important clinical application may be the inhalation, or instillation of collectin-based drugs as part of surfactant therapy, to prevent and treat infectious and inflammatory diseases of newborn infants.


Antimicrobial Agents and Chemotherapy | 2007

The β-Defensin Gallinacin-6 Is Expressed in the Chicken Digestive Tract and Has Antimicrobial Activity against Food-Borne Pathogens

Albert van Dijk; Edwin J.A. Veldhuizen; Stefanie I. C. Kalkhove; Johanna L.M. Tjeerdsma-van Bokhoven; Roland A. Romijn; Henk P. Haagsman

ABSTRACT Food-borne pathogens are responsible for most cases of food poisoning in developed countries and are often associated with poultry products, including chicken. Little is known about the role of β-defensins in the chicken digestive tract and their efficacy. In this study, the expression of chicken β-defensin gallinacin-6 (Gal-6) and its antimicrobial activity against food-borne pathogens were investigated. Reverse transcription-PCR analysis showed high expression of Gal-6 mRNA in the esophagus and crop, moderate expression in the glandular stomach, and low expression throughout the intestinal tract. Putative transcription factor binding sites for nuclear factor kappa beta, activator protein 1, and nuclear factor interleukin-6 were found in the Gal-6 gene upstream region, which suggests a possible inducible nature of the Gal-6 gene. In colony-counting assays, strong bactericidal and fungicidal activity was observed, including bactericidal activity against food-borne pathogens Campylobacter jejuni, Salmonella enterica serovar Typhimurium, Clostridium perfringens, and Escherichia coli. Treatment with 16 μg/ml synthetic Gal-6 resulted in a 3 log unit reduction in Clostridium perfringens survival within 60 min, indicating fast killing kinetics. Transmission electron microscopy examination of synthetic-Gal-6-treated Clostridium perfringens cells showed dose-dependent changes in morphology after 30 min, including intracellular granulation, cytoplasm retraction, irregular septum formation in dividing cells, and cell lysis. The high expression in the proximal digestive tract and broad antimicrobial activity suggest that chicken β-defensin gallinacin-6 plays an important role in chicken innate host defense.


PLOS ONE | 2014

The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations

Sara A. Burt; Victoria T. A. Ojo-Fakunle; Jenifer Woertman; Edwin J.A. Veldhuizen

The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0–0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0–8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrols bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrols inhibiting effect on biofilm formation. These results indicate that carvacrols activity in inhibition of biofilm formation may be related to the disruption of quorum sensing.


Respiratory Physiology & Neurobiology | 2010

Recent advances in alveolar biology: Evolution and function of alveolar proteins

Sandra Orgeig; Pieter S. Hiemstra; Edwin J.A. Veldhuizen; Cristina Casals; Howard Clark; Angela Haczku; Lars Knudsen; Fred Possmayer

This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies.


Biophysical Journal | 2000

Dimeric N-Terminal Segment of Human Surfactant Protein B (dSP-B1–25) Has Enhanced Surface Properties Compared to Monomeric SP-B1–25

Edwin J.A. Veldhuizen; Alan J. Waring; Frans J. Walther; Joseph J. Batenburg; Lambert M.G. van Golde; Henk P. Haagsman

Surfactant protein B (SP-B) is a 17-kDa dimeric protein produced by alveolar type II cells. Its main function is to lower the surface tension by inserting lipids into the air/liquid interface of the lung. SP-Bs function can be mimicked by a 25-amino acid peptide, SP-B(1-25), which is based on the N-terminal sequence of SP-B. We synthesized a dimeric version of this peptide, dSP-B(1-25), and the two peptides were tested for their surface activity. Both SP-B(1-25) and dSP-B(1-25) showed good lipid mixing and adsorption activities. The dimeric peptide showed activity comparable to that of native SP-B in the pressure-driven captive bubble surfactometer. Spread surface films led to stable near-zero minimum surface tensions during cycling while protein free, and films containing SP-B(1-25) lost material from the interface during compression. We propose that dimerization of the peptide is required to create a lipid reservoir attached to the monolayer from which new material can enter the surface film upon expansion of the air/liquid interface. The dimeric state of SP-B can fulfill the same function in vivo.


Biophysical Journal | 2000

The Role of Surfactant Proteins in DPPC Enrichment of Surface Films

Edwin J.A. Veldhuizen; Joseph J. Batenburg; Lambert M.G. van Golde; Henk P. Haagsman

A pressure-driven captive bubble surfactometer was used to determine the role of surfactant proteins in refinement of the surface film. The advantage of this apparatus is that surface films can be spread at the interface of an air bubble with a different lipid/protein composition than the subphase vesicles. Using different combinations of subphase vesicles and spread surface films a clear correlation between dipalmitoylphosphatidylcholine (DPPC) content and minimum surface tension was observed. Spread phospholipid films containing 50% DPPC over a subphase containing 50% DPPC vesicles did not form stable surface films with a low minimum surface tension. Addition of surfactant protein B (SP-B) to the surface film led to a progressive decrease in minimum surface tension toward 1 mN/m upon cycling, indicating an enrichment in DPPC. Surfactant protein C (SP-C) had no such detectable refining effect on the film. Surfactant protein A (SP-A) had a positive effect on refinement when it was present in the subphase. However, this effect was only observed when SP-A was combined with SP-B and incubated with subphase vesicles before addition to the air bubble containing sample chamber. Comparison of spread films with adsorbed films indicated that refinement induced by SP-B occurs by selective removal of non-DPPC lipids upon cycling. SP-A, combined with SP-B, induces a selective adsorption of DPPC from subphase vesicles into the surface film. This is achieved by formation of large lipid structures which might resemble tubular myelin.

Collaboration


Dive into the Edwin J.A. Veldhuizen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Floris J. Bikker

Academic Center for Dentistry Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge