Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin Kukk is active.

Publication


Featured researches published by Edwin Kukk.


Physical Review Letters | 2010

Double Core-Hole Production in N2: Beating the Auger Clock

Li Fang; M. Hoener; Oliver Gessner; Francesco Tarantelli; Stephen T. Pratt; Oleg Kornilov; Christian Buth; Markus Gühr; E. P. Kanter; Christoph Bostedt; John D. Bozek; Phil Bucksbaum; Mau Hsiung Chen; Ryan Coffee; James Cryan; M. Glownia; Edwin Kukk; Stephen R. Leone; N. Berrah

We investigate the creation of double K-shell holes in N2 molecules via sequential absorption of two photons on a time scale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the first with two core holes on the same N atom, and the second with one core hole on each N atom. We report the first direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type.


Dental Materials | 2009

Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions

Moustafa N. Aboushelib; Hesam Mirmohamadi; Jukka Pekka Matinlinna; Edwin Kukk; Hani F. Ounsi; Ziad Salameh

OBJECTIVES The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. METHODS Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. RESULTS There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. SIGNIFICANCE The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser

N. Berrah; Li Fang; B. Murphy; T. Osipov; K. Ueda; Edwin Kukk; Raimund Feifel; Peter van der Meulen; Peter Salén; H. T. Schmidt; Richard D. Thomas; Mats Larsson; Robert Richter; Kevin C. Prince; John D. Bozek; Christoph Bostedt; S. Wada; Maria Novella Piancastelli; Motomichi Tashiro; Masahiro Ehara

Theory predicts that double-core-hole (DCH) spectroscopy can provide a new powerful means of differentiating between similar chemical systems with a sensitivity not hitherto possible. Although DCH ionization on a single site in molecules was recently measured with double- and single-photon absorption, double-core holes with single vacancies on two different sites, allowing unambiguous chemical analysis, have remained elusive. Here we report that direct observation of double-core holes with single vacancies on two different sites produced via sequential two-photon absorption, using short, intense X-ray pulses from the Linac Coherent Light Source free-electron laser and compare it with theoretical modeling. The observation of DCH states, which exhibit a unique signature, and agreement with theory proves the feasibility of the method. Our findings exploit the ultrashort pulse duration of the free-electron laser to eject two core electrons on a time scale comparable to that of Auger decay and demonstrate possible future X-ray control of physical inner-shell processes.


Langmuir | 2012

Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry

Ermei Mäkilä; Luis M. Bimbo; Martti Kaasalainen; Barbara Herranz; Anu J. Airaksinen; Markku Heinonen; Edwin Kukk; Jouni Hirvonen; Hélder A. Santos; Jarno Salonen

Thermally carbonized porous silicon (TCPSi) microparticles were chemically modified with organofunctional alkoxysilane molecules using a silanization process. Before the silane coupling, the TCPSi surface was activated by immersion in hydrofluoric acid (HF). Instead of regeneration of the silicon hydride species, the HF immersion of silicon carbide structure forms a silanol termination (Si-OH) on the surface required for silanization. Subsequent functionalization with 3-aminopropyltriethoxysilane provides the surface with an amine (-NH(2)) termination, while the SiC-type layer significantly stabilizes the functionalized structure both mechanically and chemically. The presence of terminal amine groups was verified with FTIR, XPS, CHN analysis, and electrophoretic mobility measurements. The overall effects of the silanization to the morphological properties of the initial TCPSi were analyzed and they were found to be very limited, making the treatment effects highly predictable. The maximum obtained number of amine groups on the surface was calculated to be 1.6 groups/nm(2), corresponding to 79% surface coverage. The availability of the amine groups for further biofunctionalization was confirmed by successful biotinylation. The isoelectric point (IEP) of amine-terminated TCPSi was measured to be at pH 7.7, as opposed to pH 2.6 for untreated TCPSi. The effects of the surface amine termination on the cell viability of Caco-2 and HT-29 cells and on the in vitro fenofibrate release profiles were also assessed. The results indicated that the surface modification did not alter the loading of the drug inside the pores and also retained the beneficial enhanced dissolution characteristics similar to TCPSi. Cellular viability studies also showed that the surface modification had only a limited effect on the biocompatibility of the PSi.


Physical Review Letters | 2013

Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses

H. Fukuzawa; Sang-Kil Son; K. Motomura; S. Mondal; K. Nagaya; S. Wada; XiaoJing Liu; R. Feifel; T. Tachibana; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda

We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.


Molecular Pharmaceutics | 2011

¹⁸F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography.

Mirkka Sarparanta; Ermei Mäkilä; Teemu Heikkilä; Jarno Salonen; Edwin Kukk; Vesa-Pekka Lehto; Hélder A. Santos; Jouni Hirvonen; Anu J. Airaksinen

Because of its biocompatibility and ability to accommodate a variety of payloads from poorly soluble drugs to biomolecules, porous silicon (PSi) is a lucrative material for the development of carriers for particle-mediated drug delivery. We report a successful direct one-step (18)F-radiolabeling of three types of PSi microparticles, thermally hydrocarbonized THCPSi, thermally oxidized TOPSi, and thermally carbonized TCPSi for the investigation of their biodistribution in vivo with positron emission tomography as part of their evaluation as carriers for particle-mediated drug delivery. FTIR and XPS characterization of the PSi materials after carrier-added (18)F/(19)F-radiolabeling reveals that depending on the material the (18)F-labeling is likely to be accomplished either by substitution for surface silyl hydrogen or silyl fluoride or by nucleophilic attack of (18)F(-) to Si-O-Si bridges. With the selected (18)F-radiolabeling method, good to excellent in vitro radiolabel stability in simulated gastric and intestinal fluids and in plasma is achieved for all the particle types studied. Finally, a preliminary evaluation of (18)F-THCPSi microparticle biodistribution in the rat gastrointestinal tract after oral administration is reported, illustrating the utility of using (18)F-radiolabeled PSi as imaging probes for PSi-based drug delivery carrier distribution in vivo.


Physical Review Letters | 2012

Experimental Verification of the Chemical Sensitivity of Two-Site Double Core-Hole States Formed by an X-Ray Free-Electron Laser

Peter Salén; P. van der Meulen; H. T. Schmidt; Richard D. Thomas; Mats Larsson; Raimund Feifel; Maria Novella Piancastelli; L. Fang; B. Murphy; T. Osipov; N. Berrah; Edwin Kukk; K. Ueda; John D. Bozek; Christoph Bostedt; S. Wada; R. Richter; V. Feyer; Kevin C. Prince

We have performed x-ray two-photon photoelectron spectroscopy using the Linac Coherent Light Source x-ray free-electron laser in order to study double core-hole (DCH) states of CO2, N2O, and N2. The experiment verifies the theory behind the chemical sensitivity of two-site DCH states by comparing a set of small molecules with respect to the energy shift of the two-site DCH state and by extracting the relevant parameters from this shift.


Nature Communications | 2014

Femtosecond X-ray-induced explosion of C 60 at extreme intensity

B. Murphy; T. Osipov; Zoltan Jurek; L. Fang; Sang-Kil Son; M. Mucke; John H. D. Eland; Vitali Zhaunerchyk; Raimund Feifel; L. Avaldi; P. Bolognesi; Christoph Bostedt; John D. Bozek; J. Grilj; Markus Guehr; L. J. Frasinski; J. M. Glownia; D.T. Ha; K. Hoffmann; Edwin Kukk; Brian K. McFarland; Catalin Miron; E. Sistrunk; Richard J. Squibb; K. Ueda; Robin Santra; N. Berrah

Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.


Green Chemistry | 2016

Meso- and microporous soft templated hydrothermal carbons for dye removal from water

Sara-Maaria Alatalo; Ermei Mäkilä; Eveliina Repo; Markku Heinonen; Jarno Salonen; Edwin Kukk; Mika Sillanpää; Maria-Magdalena Titirici

The hydrothermal carbonization (HTC) technique has shown a great ability in the synthesis of carbon materials with special properties for a wide range of different applications. Here, a hypersaline salt mixture (LiCl–ZnCl2) combined with hydrothermal carbonization was applied in order to obtain sulfur containing micro- and mesoporous (0.3–40 nm) monolithic carbons with high surface areas (400–550 m2 g−1) and well developed porosity (0.4–1.2 cm3 g−1). Fructose was used as a carbon source and sulfur was introduced in an aromatic configuration as 2-thiophenecarboxaldehyde. The resulting carbon materials showed a promising removal capacity (qe = 0.3 mmol g−1) towards methylene blue and the adsorption followed the Sips isotherm independent of the pH. Intraparticle diffusion appeared to control the adsorption kinetics. Carbon materials could be easily regenerated with simple ethanol washing. The dye pollutant could be completely desorbed from the adsorbents surface, while the adsorbent still maintained removal efficiency of above 90% during three cycles.


Physical Review Letters | 2012

Multiphoton Ionization as a clock to Reveal Molecular Dynamics with Intense Short X-ray Free Electron Laser Pulses

L. Fang; T. Osipov; B. Murphy; Francesco Tarantelli; Edwin Kukk; James Cryan; M. Glownia; P. H. Bucksbaum; Ryan Coffee; Mau Hsiung Chen; Christian Buth; N. Berrah

We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short x-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval between the photoabsorption events. Using multiphoton ionization as a tool of the multiple-pulse pump-probe scheme, we demonstrate the modification of the ionization dynamics as we vary the x-ray laser pulse duration.

Collaboration


Dive into the Edwin Kukk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Berrah

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

John D. Bozek

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Murphy

Western Michigan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Wada

Hiroshima University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge