Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin Lebrija-Trejos is active.

Publication


Featured researches published by Edwin Lebrija-Trejos.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Successional dynamics in Neotropical forests are as uncertain as they are predictable

Natalia Norden; Héctor A. Angarita; Frans Bongers; Miguel Martínez-Ramos; Iñigo Granzow de la Cerda; Michiel van Breugel; Edwin Lebrija-Trejos; Jorge A. Meave; John Vandermeer; G. Bruce Williamson; Bryan Finegan; Rita C. G. Mesquita; Robin L. Chazdon

Significance Although forest succession has been approached as a predictable process, successional trajectories vary widely, even among nearby stands with similar environmental conditions and disturbance histories. We quantified predictability and uncertainty during tropical forest succession using dynamical models describing the interactions among stem density, basal area, and species density over time. We showed that the trajectories of these forest attributes were poorly predicted by stand age and varied significantly within and among sites. Our models reproduced the general successional trends observed, but high levels of noise were needed to increase model predictability. These levels of uncertainty call into question the premise that successional processes are consistent over space and time, and challenge the way ecologists view tropical forest regeneration. Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes—stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration.


Ecology | 2013

Successional changes in functional composition contrast for dry and wet tropical forest

Madelon Lohbeck; Lourens Poorter; Edwin Lebrija-Trejos; Miguel Martínez-Ramos; Jorge A. Meave; Horacio Paz; Eduardo A. Pérez-García; I. Eunice Romero-Pérez; Alejandra Tauro; Frans Bongers

We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.


Ecology | 2014

Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest

Edwin Lebrija-Trejos; S. Joseph Wright; Andres Hernandez; Peter B. Reich

A complex set of interactions among neighbors influences plant performance and community structure. Understanding their joint operation requires extensive information on species characteristics and individual performance. We evaluated first-year survival of 35719 tropical forest seedlings of 222 species and 15 annual cohorts relative to the density of conspecific and heterospecific neighbors and the phylogenetic similarity of heterospecific neighbors. Neighbors were from two size classes, and size asymmetric interactions provided insight into likely mechanisms. Large heterospecific and conspecific neighbors reduced seedling survival equally, suggesting resource competition rather than host-specific enemies as a mechanism. In contrast, much stronger negative conspecific effects were associated with seedling neighbors capable of limited resource uptake, suggesting shared pests rather than competition as the mechanism. Survival improved, however, near phylogenetically similar heterospecific neighbors, suggesting habitat associations shared among closely related species affect spatial patterns of performance. Improved performance near phylogenetically similar neighbors is an emerging pattern in the handful of similar studies.


PLOS ONE | 2012

Predicting Tropical Dry Forest Successional Attributes from Space: Is the Key Hidden in Image Texture?

J. Alberto Gallardo-Cruz; Jorge A. Meave; Edgar J. González; Edwin Lebrija-Trejos; Marco Antonio Romero-Romero; Eduardo A. Pérez-García; Rodrigo Gallardo-Cruz; José Luis Hernández-Stefanoni; Carlos Martorell

Biodiversity conservation and ecosystem-service provision will increasingly depend on the existence of secondary vegetation. Our success in achieving these goals will be determined by our ability to accurately estimate the structure and diversity of such communities at broad geographic scales. We examined whether the texture (the spatial variation of the image elements) of very high-resolution satellite imagery can be used for this purpose. In 14 fallows of different ages and one mature forest stand in a seasonally dry tropical forest landscape, we estimated basal area, canopy cover, stem density, species richness, Shannon index, Simpson index, and canopy height. The first six attributes were also estimated for a subset comprising the tallest plants. We calculated 40 texture variables based on the red and the near infrared bands, and EVI and NDVI, and selected the best-fit linear models describing each vegetation attribute based on them. Basal area (R 2 = 0.93), vegetation height and cover (0.89), species richness (0.87), and stand age (0.85) were the best-described attributes by two-variable models. Cross validation showed that these models had a high predictive power, and most estimated vegetation attributes were highly accurate. The success of this simple method (a single image was used and the models were linear and included very few variables) rests on the principle that image texture reflects the internal heterogeneity of successional vegetation at the proper scale. The vegetation attributes best predicted by texture are relevant in the face of two of the gravest threats to biosphere integrity: climate change and biodiversity loss. By providing reliable basal area and fallow-age estimates, image-texture analysis allows for the assessment of carbon sequestration and diversity loss rates. New and exciting research avenues open by simplifying the analysis of the extent and complexity of successional vegetation through the spatial variation of its spectral information.


PLOS ONE | 2015

Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

Madelon Lohbeck; Edwin Lebrija-Trejos; Miguel Martínez-Ramos; Jorge A. Meave; Lourens Poorter; Frans Bongers

Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.


Folia Geobotanica | 2010

Vegetation Heterogeneity and Life-Strategy Diversity in the Flora of the Heterogeneous Landscape of Nizanda, Oaxaca, Mexico

Eduardo A. Pérez-García; Jorge A. Meave; José Luis Villaseñor; J. Alberto Gallardo-Cruz; Edwin Lebrija-Trejos

We updated the floristic checklist of the Nizanda region, Isthmus of Tehuantepec (southern Mexico), characterized the occurring plant communities based on dominant species, and described the region’s flora according to life form, growth form, growth type, and growth habit spectra. Ten years of botanical exploration, along with surveys in 188 100-m2 samples from different vegetation types, provided the baseline floristic information. Ordination and classification analyses were performed to examine the degree of differentiation between communities. Geographical ranges of all species were used to assess biogeographical relationships of this flora. The inventory includes 920 species (553 genera, 124 families). More than one-third of the families were represented by a single species, whereas the 10 richest families had 43% of the species richness. Dendrograms showing plot classification at three taxonomic levels (species, genus and family) revealed savannah as the most strongly differentiated community amid seven vegetation types. Regarding growth forms, forbs and trees prevailed. Phanerophytes were the most common life form category, whereas herbs and woody plants were the dominant growth types. The largest richness for all taxonomic levels was recorded in the tropical dry forest. The expanded floristic knowledge gained for the Nizanda region provided better criteria to revise the classification scheme of its vegetation. Our preliminary biogeographical analysis illustrates the role of the Isthmus of Tehuantepec as a corridor for thermophilous floras between two oceanic watersheds, and as a natural distributional limit for several Mesoamerican plant species.


Ecology Letters | 2016

Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest

Edwin Lebrija-Trejos; Peter B. Reich; Andres Hernandez; S. Joseph Wright

Multiple niche-based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density-dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first-year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density-dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow-growing and well-defended species. Niche differentiation along the growth-survival trade-off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed-size variation and promote species coexistence through a tolerance-fecundity trade-off.


Journal of Ecology | 2015

Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites

Susan G. Letcher; Jesse R. Lasky; Robin L. Chazdon; Natalia Norden; S. Joseph Wright; Jorge A. Meave; Eduardo A. Pérez-García; Rodrigo Muñoz; Eunice Romero‐Pérez; Ana Andrade; José Luis Andrade; Patricia Balvanera; Justin M. Becknell; Tony Vizcarra Bentos; Radika Bhaskar; Frans Bongers; Vanessa K. Boukili; Pedro H. S. Brancalion; Ricardo G. César; Deborah A. Clark; David B. Clark; Dylan Craven; Alexander DeFrancesco; Juan M. Dupuy; Bryan Finegan; Eugenio González‐Jiménez; Jefferson S. Hall; Kyle E. Harms; José Luis Hernández‐Stefanoni; Peter Hietz

Successional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late-successional stages in wet forest. We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old-growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old-growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. Successional habitat specialization is non-randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend towards stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. Synthesis. The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species-rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species-rich taxa.


Nature Ecology and Evolution | 2018

Legume abundance along successional and rainfall gradients in Neotropical forests

Maga Gei; Danaë M. A. Rozendaal; Lourens Poorter; Frans Bongers; Janet I. Sprent; Mira D. Garner; T. Mitchell Aide; José Luis Andrade; Patricia Balvanera; Justin M. Becknell; Pedro H. S. Brancalion; George A. L. Cabral; Ricardo G. César; Robin L. Chazdon; Rebecca J. Cole; Gabriel Dalla Colletta; Ben de Jong; Julie S. Denslow; Daisy H. Dent; Saara J. DeWalt; Juan Manuel Dupuy; Sandra M. Durán; Mário Marcos do Espírito Santo; G. Wilson Fernandes; Yule Roberta Ferreira Nunes; Bryan Finegan; Vanessa Granda Moser; Jefferson S. Hall; José Luis Hernández-Stefanoni; André Braga Junqueira

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.Data from 42 chronosequence sites show a geater abundance of legumes in seasonally dry forests than in wet forests, particularly during early secondary succession, probably owing to legumes’ nitrogen-fixing ability and reduced leaflet size.


Ecology | 2010

Functional traits and environmental filtering drive community assembly in a species-rich tropical system.

Edwin Lebrija-Trejos; Eduardo A. Pérez-García; Jorge A. Meave; Frans Bongers; Lourens Poorter

Collaboration


Dive into the Edwin Lebrija-Trejos's collaboration.

Top Co-Authors

Avatar

Jorge A. Meave

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Frans Bongers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Eduardo A. Pérez-García

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Miguel Martínez-Ramos

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Lourens Poorter

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madelon Lohbeck

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Patricia Balvanera

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Joseph Wright

Smithsonian Tropical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge