Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edwin Michael is active.

Publication


Featured researches published by Edwin Michael.


Parasitology | 1996

Re-assessing the global prevalence and distribution of lymphatic filariasis.

Edwin Michael; D.A.P. Bundy; Bryan T. Grenfell

This paper estimates the global burden of lymphatic filariasis based on a review of the published literature on infection and disease surveys. A method for aggregating and projecting prevalence data from individual studies to national, regional and global levels, which also facilitates the estimation of gender and age-specific burdens, is presented. The method weights in favour of the larger, and hence presumbably more reliable, studies and relies on estimated empirical relationships between gender, age, infection and disease in order to correct studies with incomplete data. The results presented here suggest that although the overall prevalence of filariasis cases is 2.0% globally (approximately totalling 119 million cases), the disease continues to be of considerable local importance, particularly in India and Sub-Saharan Africa. Estimates by age and gender clearly show that, unlike other helminth infections, filariasis is mainly a disease of the adult and older age-classes and appears to be more prevalent in males. This work suggests that the derivation of more accurate estimates of the burden of filariasis will require a better understanding of both the epidemiology and the spatial aspects of infection and disease. It also suggests that filariasis is preventable based on a geographically targeted strategy for control.


Parasitology Today | 1997

Global mapping of lymphatic filariasis

Edwin Michael; D.A.P. Bundy

Disease maps are becoming increasingly important in infectious disease epidemiology and control. For lymphatic filariasis, the development of such maps has been hampered in the past by the lack of data on the geographical distribution of levels of infection or disease. Here, Edwin Michael and Don Bundy present an atlas for this parasitic disease derived from a recently compiled geographical database. Focusing on mapping and analysis of case prevalence data at the global and regional levels, the authors show how mapping the geographical distribution is integral not only to assessing spatial patterns in the infection and disease distribution but also to stratifying endemic areas by infection and/or disease rate.


Parasitology Today | 2000

The Economic Burden of Lymphatic Filariasis in India

K. D. Ramaiah; Pradeep Das; Edwin Michael; Helen L. Guyatt

Lymphatic filariasis affects 119 million people living in 73 countries, with India accounting for 40% of the global prevalence of infection. Despite its debilitating effects, lymphatic filariasis is given very low control priority. One of the reasons for this is paucity of information on the economic burden of the disease. Recent studies in rural areas of south India have shown that the treatment costs and loss of work time due to the disease are considerable. Based on the results of these studies, Kapa Ramaiah et al. here estimate the annual economic loss because of lymphatic filariasis for India and discuss the implications of their findings.


Advances in Parasitology | 2000

The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections

Simon Brooker; Edwin Michael

Geographic information systems (GIS) and remote sensing (RS) technologies are being used increasingly to study the spatial and temporal patterns of infectious diseases. For helminth infections, however, such applications have only recently begun despite the recognition that infection distribution patterns in endemic areas may have profound effects on parasite population dynamics and therefore the design and implementation of successful control programmes. Here, we review the early applications of these technologies to the major human helminths (geohelminths, schistosomes and the major lymphatic filarial worms), which demonstrate the potential of these tools to serve as: (1) an effective data capture, mapping and analysis tool for the development of helminth atlases; (2) an environment for modeling the spatial distribution of infection in relation to RS and environmental variables, hence furthering the understanding of the impact of density-independent factors in underlying observed parasite spatial distributions and their effective prediction; and (3) a focal tool in parasite control programming given their abilities to (i) better define endemic areas, (ii) provide more precise estimates of populations-at-risk, (iii) map their distribution in relation to health facilities and (iv) by facilitating the stratification of areas by infection risk probabilities, to aid in the design of optimal drug or health measure delivery systems. These applications suggest a successful role for GIS/RS applications in investigating the spatial epidemiology of the major human helminths. It is evident that further work addressing a range of critical issues include problems of data quality, the need for a better understanding of the population biological impact of environmental factors on critical stages of the parasite life-cycle, the impacts and consequences of spatial scale on these relationships, and the development and use of appropriate spatially-explicit statistical and modeling techniques in data analysis, is required if the true potential of this tool to helminthology is to be fully realized.


Journal of the Royal Society Interface | 2013

A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010

Robert C. Reiner; T. Alex Perkins; Christopher M. Barker; Tianchan Niu; Luis Fernando Chaves; Alicia M. Ellis; Dylan B. George; Arnaud Le Menach; Juliet R. C. Pulliam; Donal Bisanzio; Caroline O. Buckee; Christinah Chiyaka; Derek A. T. Cummings; Andres J. Garcia; Michelle L. Gatton; Peter W. Gething; David M. Hartley; Geoffrey L. Johnston; Eili Y. Klein; Edwin Michael; Steven W. Lindsay; Alun L. Lloyd; David M Pigott; William K. Reisen; Nick W. Ruktanonchai; Brajendra K. Singh; Andrew J. Tatem; Uriel Kitron; Simon I. Hay; Thomas W. Scott

Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.


Environmental Health Perspectives | 2009

Modeling the Effects of Weather and Climate Change on Malaria Transmission

Paul E. Parham; Edwin Michael

Background In recent years, the impact of climate change on human health has attracted considerable attention; the effects on malaria have been of particular interest because of its disease burden and its transmission sensitivity to environmental conditions. Objectives We investigated and illustrated the role that dynamic process-based mathematical models can play in providing strategic insights into the effects of climate change on malaria transmission. Methods We evaluated a relatively simple model that permitted valuable and novel insights into the simultaneous effects of rainfall and temperature on mosquito population dynamics, malaria invasion, persistence and local seasonal extinction, and the impact of seasonality on transmission. We illustrated how large-scale climate simulations and infectious disease systems may be modeled and analyzed and how these methods may be applied to predicting changes in the basic reproduction number of malaria across Tanzania. Results We found extinction to be more strongly dependent on rainfall than on temperature and identified a temperature window of around 32–33°C where endemic transmission and the rate of spread in disease-free regions is optimized. This window was the same for Plasmodium falciparum and P. vivax, but mosquito density played a stronger role in driving the rate of malaria spread than did the Plasmodium species. The results improved our understanding of how temperature shifts affect the global distribution of at-risk regions, as well as how rapidly malaria outbreaks take off within vulnerable populations. Conclusions Disease emergence, extinction, and transmission all depend strongly on climate. Mathematical models offer powerful tools for understanding geographic shifts in incidence as climate changes. Nonlinear dependences of transmission on climate necessitates consideration of both changing climate trends and variability across time scales of interest.


Annual Review of Entomology | 2009

Role of Vector Control in the Global Program to Eliminate Lymphatic Filariasis

Moses J. Bockarie; Erling M. Pedersen; Graham B. White; Edwin Michael

Lymphatic filariasis (LF) is a major cause of acute and chronic morbidity in the tropical and subtropical parts of the world. The availability of safe, single-dose, drug treatment regimens capable of suppressing microfilaremia to very low levels, along with improvements in techniques for diagnosing infection, has resulted in the targeting of this major mosquito-borne disease for global elimination. The Global Program to Eliminate Lymphatic Filariasis (GPELF) was launched in 2000 with the principal objective of breaking the cycles of transmission of Wuchereria bancrofti and Brugia spp. through the application of annual mass drug administrations (MDAs) to entire at-risk populations. Although significant progress in initiating MDA programs in endemic countries has been made, emerging challenges to this approach have raised questions regarding the effectiveness of using MDA alone to eliminate LF without the inclusion of supplementary vector control. Here, we review advances in knowledge of vector ecology, vector-parasite relationships, and both empirical and theoretical evidence regarding vector management to assess the feasibility and strategic value of including vector control in the GPELF initiative to achieve the global elimination of LF.


Lancet Infectious Diseases | 2004

Mathematical modelling and the control of lymphatic filariasis

Edwin Michael; Mwele N. Malecela-Lazaro; Paul E. Simonsen; Erling M. Pedersen; Guy C. Barker; Anil Kumar; James W. Kazura

The current global initiative to eliminate lymphatic filariasis represents one of the largest mass drug administration programmes ever conceived for the control of a parasitic disease. Yet, it is still not known whether the WHO-recommended primary strategy of applying annual single-dose mass chemotherapy with a combination of two drugs for 4-6 years will effectively break parasite transmission from all endemic communities. Here we review recent work on the development and application of a deterministic mathematical model of filariasis transmission, to show how models of parasite transmission will help resolve the key currently debated questions regarding the ultimate effectiveness of the global strategy to control filariasis. These critical questions include the required duration of mass treatment in different endemic areas, the optimal drug coverage required to meet control targets within prescribed timeframes, the impact and importance of adding vector control to mass chemotherapy regimens, and the likelihood of the development of drug resistance by treated worm populations. The results demonstrate the vital role that integrating these models into control programming can have in providing effective decision-support frameworks for undertaking the optimal design and monitoring of regional and global filariasis-control programmes. Operationally, the models show that the effectiveness of the strategy to achieve filariasis control will be determined by successfully addressing two key factors: the need to maintain high community treatment coverages, and the need to include vector control measures especially in areas of high endemicity.


Malaria Journal | 2011

Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population?

Dan W. Meyrowitsch; Erling M. Pedersen; Michael Alifrangis; Thomas H. Scheike; Mwelecele N. Malecela; Stephen Magesa; Yahya A. Derua; Rwehumbiza T. Rwegoshora; Edwin Michael; Paul E. Simonsen

BackgroundIn sub-Saharan Africa (SSA), malaria caused by Plasmodium falciparum has historically been a major contributor to morbidity and mortality. Recent reports indicate a pronounced decline in infection and disease rates which are commonly ascribed to large-scale bed net programmes and improved case management. However, the decline has also occurred in areas with limited or no intervention. The present study assessed temporal changes in Anopheline populations in two highly malaria-endemic communities of NE Tanzania during the period 1998-2009.MethodsBetween 1998 and 2001 (1st period) and between 2003 and 2009 (2nd period), mosquitoes were collected weekly in 50 households using CDC light traps. Data on rainfall were obtained from the nearby climate station and were used to analyze the association between monthly rainfall and malaria mosquito populations.ResultsThe average number of Anopheles gambiae and Anopheles funestus per trap decreased by 76.8% and 55.3%, respectively over the 1st period, and by 99.7% and 99.8% over the 2nd period. During the last year of sampling (2009), the use of 2368 traps produced a total of only 14 Anopheline mosquitoes. With the exception of the decline in An. gambiae during the 1st period, the results did not reveal any statistical association between mean trend in monthly rainfall and declining malaria vector populations.ConclusionA longitudinal decline in the density of malaria mosquito vectors was seen during both study periods despite the absence of organized vector control. Part of the decline could be associated with changes in the pattern of monthly rainfall, but other factors may also contribute to the dramatic downward trend. A similar decline in malaria vector densities could contribute to the decrease in levels of malaria infection reported from many parts of SSA.


Philosophical Transactions of the Royal Society B | 2015

Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission

Paul E. Parham; Joanna Waldock; George K. Christophides; Deborah Hemming; Folashade B. Agusto; Katherine J. Evans; Nina H. Fefferman; Holly Gaff; Abba B. Gumel; Shannon L. LaDeau; Suzanne Lenhart; Ronald E. Mickens; Elena N. Naumova; Richard S. Ostfeld; Paul D. Ready; Matthew B. Thomas; Jorge X. Velasco-Hernandez; Edwin Michael

Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems.

Collaboration


Dive into the Edwin Michael's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Kazura

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pradeep Das

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge