Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Efstathia Bakogeorgou is active.

Publication


Featured researches published by Efstathia Bakogeorgou.


Breast Cancer Research | 2004

Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action

Marilena Kampa; Vassilia-Ismini Alexaki; George Notas; Artemissia-Phoebe Nifli; Anastassia Nistikaki; Anastassia Hatzoglou; Efstathia Bakogeorgou; Elena Kouimtzoglou; George Blekas; Dimitrios Boskou; Achille Gravanis; Elias Castanas

IntroductionThe oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid.MethodsThis work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production).ResultsThe tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system.ConclusionsPhenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action.


Journal of Cellular Biochemistry | 2000

Potent inhibitory action of red wine polyphenols on human breast cancer cells.

Athina Damianaki; Efstathia Bakogeorgou; Marilenna Kampa; George Notas; Anastassia Hatzoglou; Simone Panagiotou; Claudia Gemetzi; Elias Kouroumalis; Pierre-Marie Martin; Elias Castanas

Breast cancer (one of the most common malignancy in Western societies), as well as esophagus, stomach, lung, bladder, and prostate cancer, depend on environmental factors and diet for growth and evolution. Dietary micronutriments have been proposed as effective inhibitory agents for cancer initiation, progression, and incidence. Among them, polyphenols, present in different foods and beverages, have retained attention in recent years. Red wine is a rich source of polyphenols, and their antioxidant and tumor arresting effects have been demonstrated in different in vitro and in vivo systems. In the present study, we have measured the antiproliferative effect of red wine concentrate, its total polyphenolic pool, and purified catechin, epicatechin, quercetin, and resveratrol, which account for more than 70% of the total polyphenols in red wine, on the proliferation of hormone sensitive (MCF7, T47D) and resistant (MDA‐MB‐231) breast cancer cell lines. Our results indicate that polyphenols, at the picomolar or the nanomolar range, decrease cell proliferation in a dose‐ and a time‐dependant manner. In hormone sensitive cell lines, a specific interaction of each polyphenol with steroid receptors was observed, with IC50s lower than previously described. Interaction of polyphenols with steroid receptors cannot fully explain their inhibitory effect on cell proliferation. In addition, discrete antioxidant action on each cell line was detected under the same concentrations, both by modifying the toxic effect of H2O2, and the production of reactive oxygen species (ROS), after phorbol ester stimulation. Our results suggest that low concentrations of polyphenols, and consecutively, consumption of wine, or other polyphenol‐rich foods and beverages, could have a beneficial antiproliferative effect on breast cancer cell growth. J. Cell. Biochem. 78:429–441, 2000.


Nutrition and Cancer | 2000

Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines.

Marilenna Kampa; Anastassia Hatzoglou; George Notas; Athina Damianaki; Efstathia Bakogeorgou; Claudia Gemetzi; Elias Kouroumalis; Pierre-Marie Martin; Elias Castanas

The effect of different wine antioxidant polyphenols (catechin, epicatechin, quercetin, and resveratrol) on the growth of three prostate cancer cell lines (LNCaP, PC3, and DU145) was investigated. A dose- and time-dependent inhibition of cell growth by polyphenols was found at nanomolar concentrations. The proliferation of LNCaP and PC3 cells was preferentially inhibited by flavonoids (catechin, epicatechin, and quercetin), whereas resveratrol was the most potent inhibitor of DU145 cell growth. Possible mechanisms of action were investigated: 1) The competition of polyphenols for androgen binding in LNCaP cells revealed significant interaction only in the case of high concentrations of quercetin, at least at five orders of magnitude higher than the concentrations needed for cell growth inhibition. All other phenols showed low interactions. 2) Oxygen species production after mitogen stimulation and H²O²2 sensitivity of these cell lines did not correlate with the observed antiproliferative effects, ruling out such a mode of action. 3) NO production revealed two different patterns: LNCaP and DU145 cells produced high concentrations of NO, whereas PC3 cells produced low concentrations. Phorbol ester stimulation of cells did not reveal any additional effect in LNCaP and DU145 cells, whereas it enhanced the secretion of NO in PC3 cells. Polyphenols decreased NO secretion. This effect correlates with their antiproliferative action and the inhibition of inducible NO synthase. It is therefore proposed that the antiproliferative effect of polyphenols is mediated through the modulation of NO production. In conclusion, our data show a direct inhibitory effect of low concentrations of antioxidant wine phenols on the proliferation of human prostate cancer cell lines mediated by the production of NO, further suggesting potential beneficial effects of wine and other phenol-containing foods or drinks for the control of prostate cancer cell growth.


European Journal of Pharmacology | 1997

Opioid alkaloids and casomorphin peptides decrease the proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a partial interaction with opioid receptors

Marilenna Kampa; Efstathia Bakogeorgou; Anastassia Hatzoglou; Athina Damianaki; Pierre-Marie Martin; Elias Castanas

Opioid agonists (ethylketocyclazocine, etorphine, [D-Ala2,D-Leu5]enkephalin (DADLE), [D-Ala2, N-Me-Phe4-Gly-ol]enkephalin (DAGO), [D-Ser2,Leu5]enkephalin-Thr6 (DSLET) and morphine were found to inhibit the proliferation of human prostate cancer cell lines (LNCaP, DU145, and PC3), in a dose-dependent manner. The 50% inhibitory concentrations (IC50) were in the picomolar range. In many cases, this effect was antagonized by the general opioid antagonist, diprenorphine, indicating the existence of specific opioid binding sites. Saturation binding experiments with selective ligands and effectors showed no opioid sites on the LNCaP cell line, kappa1 and mu sites on the PC3 cell line, and kappa1, kappa3 and mu sites on the DU145 cell line. In other cases, the opioid effect was not antagonized by diprenorphine, indicating that the action of opioids might be mediated through other membrane receptors. Furthermore, casomorphin peptides, issued from bovine alpha- (alpha-casein-90-95 and alpha-casein-90-96) and beta-caseins (beta-casomorphin and beta-casomorphin-1-5), and human alphaS1-casein (alphas -casomorphin and alphaS1-casomorphin amide) inhibited cell proliferation of human prostate cell lines, also by a mechanism partly involving opioid receptors. As opioid neurons can be found in the prostate gland, and casomorphin peptides might reach the gland through the general circulation, the above findings indicate a putative role of opioids in prostate cancer cell growth.


European Journal of Pharmacology | 1996

The antiproliferative effect of opioid receptor agonists on the T47D human breast cancer cell line, is partially mediated through opioid receptors

Anastassia Hatzoglou; Efstathia Bakogeorgou; Elias Castanas

In the present study, we investigated the action of opioid receptor agonists on the proliferation of cells of the T47D human breast cancer cell line, grown in the absence of exogenously added steroids and growth factors. We found that the opioid receptor agonists ethylketocyclazocine, morphine, [D-Ala2,D-Leu5]enkephalin (DADLE), [D-Ser2,Leu5]enkephalin-Thr6 (DSLET) and etorphine inhibit dose dependently cell proliferation. The opioid receptor antagonist diprenorphine had no significant effect per se, but it was able to reverse the action of all opioid receptor agonists except morphine. In order to investigate the mechanism of action of opioids on T47D cells, we characterised the opioid receptors present on this cell line, by saturation binding, using radiolabelled [D-Ala2,N-Me-Phe4-Gly5-ol]enkephalin (DAGO, mu-opioid receptor agonist), ethylketocyclazocine (kappa 1-, kappa 2-, mu- and delta-opioid receptor agonist), diprenorphine (kappa 2-, kappa 3-, delta- and mu-opioid receptor antagonist), DADLE (delta- and mu-opioid receptor agonist), and effectors. We identified opioid binding sites belonging mainly to the kappa-type (kappa 1, kappa 2 and kappa 3), a few delta-opioid receptor sites, but no mu-opioid receptors. Our results indicate that the inhibitory effect of opioids on T47D cell growth is mediated through kappa- and delta-opioid receptors. The effect of mu-acting morphine might not be mediated through opioid receptors.


European Journal of Pharmacology | 1996

Antiproliferative and receptor binding properties of α- and β-casomorphins in the T47D human breast cancer cell line

Anastassia Hatzoglou; Efstathia Bakogeorgou; Chryssa Hatzoglou; Pierre-Marie Martin; Elias Castanas

In previous studies, we have shown that opioid agonists ([d-Ala2,d-Leu5]enkephalin (DADLE), [d-Ser2,Leu5]enkephalin-Thr6 (DSLET), ethylketocyclazocine and etorphine) bind to opioid binding sites and decrease cell proliferation of human T47D breast cancer cells. Furthermore, we provided evidence about a cross-reaction, also in the T47D human breast cancer cell line, of μ-acting opioids with type-II somatostatin receptors. Since a potential source of opioid activity in the breast might be casomorphin peptides (produced by the enzymatic degradation of α-casein and β-casein), we investigated the antiproliferative action of five different casomorphin peptides: α-casein-(90–95), α-casein-(90–96), β-casomorphin, β-casomorphin-(1–5) and morphiceptin. We show that all five peptides decreased, in a dose-dependent manner, cell proliferation. The general antagonist diprenorphine produced only a partial reversal of their action. Furthermore, we provide evidence that all peptides (except for morphiceptin) bind to δ- and κ-opioid binding sites of T47D cells with different selectivity. Finally, we show that these peptides are also partial competitors at the somatostatin receptors present in the same cell line.


Journal of Cellular Biochemistry | 1999

OPIOID AGONISTS MODIFY BREAST CANCER CELL PROLIFERATION BY BLOCKING CELLS TO THE G2/M PHASE OF THE CYCLE : INVOLVEMENT OF CYTOSKELETAL ELEMENTS

Simone Panagiotou; Efstathia Bakogeorgou; Evangelia A. Papakonstanti; Anastassia Hatzoglou; Christophe Dussert; Christos Stournaras; Pierre-Marie Martin; Elias Castanas

Opioids decrease cell proliferation in different systems including breast, prostate, lung, kidney, and intestine, through an interaction with opioid as well as other membrane‐receptor systems (somatostatin, cholinergic), through an unidentified mechanism. Recently, we have reported an interaction of taxol with opioid membrane sites (BBRC 235, 201–204, 1997), and an involvement of opioids to the modification of actin cytoskeleton in renal OK cells (J Cell Biochem. [1998] 70:60–69), indicating a possible action of the opioid effect. In the present work, we have examined the effect of two general opioid agonists (ethylketocyclazocine and etorphine) on the cell cycle, in human breast cancer T47D cells, as well as a possible modification of the cellular cytoskeleton under their action, in order to explain the antiproliferative effect of these agents. These two opioids produce a dose‐dependent and reversible decrease of the proliferation of T47D cells, with a maximun attained at 10−8 M. The addition of 10−8 M of either opioid produced a significant increase of the number of cells arrested in the G2/M phase. Confocal laser microscopy revealed a modification of the actin and tubulin microfilaments, with a clear redistribution at the periphery of the cell, reversed by the addition of the general opioid antagonist diprenorphine. Furthermore, differences between the two opioids were obvious, attributed to the different receptor affinity of each agent. The observed redistribution of actin and tubulin cytoskeletal elements gives therefore a possible answer of the antiproliferative action of opioids. The modification of the cytoskeleton, directly involved to cell division, might provoke a “mechanical” obstacle, which could be the reason of the antiproliferative effect of these agonists. Furthermore, the observed tubulin‐opioid interaction by opioids provides a possible explanation of the arrest at the G2/M phase of T47D cells under opioid treatment. Nevertheless, although the observed interaction of opioids with cytoskeletal elements gives a plausible answer of the antiproliferative effects of the agents, this might not be the only action of these agents in cell proliferation. Other, direct or indirect, genomic actions, which which remains to be elucidated, might be taken into consideration. J. Cell. Biochem. 73:204–211, 1999.


Journal of Cellular Biochemistry | 1996

Identification and characterization of opioid and somatostatin binding sites in the opossum kidney (OK) cell line and their effect on growth

Anastassia Hatzoglou; Efstathia Bakogeorgou; Evangelia A. Papakonstanti; Christos Stournaras; Dimitrios S. Emmanouel; Elias Castanas

Opioids and somatostatin analogs have been implicated in the modulation of renal water handling, but whether their action is accomplished through central and/or peripheral mechanisms remains controversial. In different cell systems, on the other hand, opioids and somatostatin inhibit cell proliferation. In the present study, we have used an established cell line, derived from opossum kidney (OK) proximal tubules, in order to characterize opioid and somatostatin receptors and to investigate the action of opioids and somatostatin on tubular epithelial tissue. Our results show the presence of one class of opioid binding sites with kappa1 selectivity (KD 4.6 ± 0.9 nM, 57,250 sites/cell), whereas delta, mu, or other subtypes of the kappa site were absent. Somatostatin presents also a high affinity site on these cells (KD 24.5 nM, 330,000 sites/cell). No effect of either opioids or somatostatin on the activity of the Na+/Pi cotransporter was observed, indicating that these agents do not affect ion transport mechanisms. However, opioid agonists and somatostatin analogs decrease OK cell proliferation in a dose‐dependent manner; in the same nanomolar concentration range, they displayed reversible specific binding for these agents. The addition of diprenorphine, a general opioid antagonist, reversed the effects of opioids, with the exception of morphine. Furthermore, morphine interacts with the somatostatin receptor in this cell line too, as was the case in the breast cancer T47D cell line. Our results indicate that in the proximal tubule opioids and somatostatin do not affect ion transport, but they might have a role in the modulation of renal cell proliferation either during ontogenesis or in kidney repair.


Journal of Cellular Biochemistry | 1998

Early alterations of actin cytoskeleton in OK cells by opioids

Evangelia A. Papakonstanti; Efstathia Bakogeorgou; Elias Castanas; Dimitrios S. Emmanouel; Roland Hartig; Christos Stournaras

Recently we identified and characterized opioid binding sites in OK (opossum kidney) cells and observed decreased proliferation of these cells in response to opioids. In the present study we investigated the effects of opioids on the actin cytoskeleton and explored whether their antiproliferative action may relate to alterations in the distribution or the dynamics of actin microfilaments. Exposure of OK cells to the opioids αS1 casomorphin and ethylketocyclazocine resulted in a rapid and substantial actin microfilament reorganization. This was documented by a significant dose‐dependent decrease in the amounts of F‐actin, determined by measurements of quantitative fluorescence, by immunoblot analysis and by a concomitant increase of the G/total‐actin ratio measured by the DNase I inhibition assay. These changes were verified by confocal laser scanning microscopy, which showed marked redistribution of the microfilamentous structures in the presence of the opioids without affecting the organization of microtubules or vimentin intermediate filaments. The effect of opioids on actin polymerization dynamics occurred within 15 min and persisted for at least 2 h, while their restoration to control levels was accomplished 6 h later, indicating a reversible phenomenon. Northern blot analysis showed that the concentration of the actin transcript was unaffected. The addition of diprenorphine, a general opioid antagonist, prevented the effects of opioids on the actin cytoskeleton. The inhibition of OK cell proliferation, induced by ethylketocyclazocine and αS1 casomorphin was partially prevented in the presence of phallacidin, which stabilizes microfilaments. Our findings demonstrate that opioids, acting via kappa 1 binding sites, induce rapidly modifications in the dynamics of actin polymerization, and in the organization of microfilaments in OK cells, which may relate to their antiproliferative effect on these cells. J. Cell. Biochem. 70:60–69, 1998.


International Immunopharmacology | 2008

Opioids modulate constitutive B-lymphocyte secretion.

Despoina Vassou; Efstathia Bakogeorgou; Marilena Kampa; Helen Dimitriou; Anastassia Hatzoglou; Elias Castanas

The opioid system plays a major role in immunomodulation, while its action on cells of the immune system may be opioid receptor-mediated or not. Opioid effects on B-lymphocytes are considered as indirect, attributed to an interplay between distinct cell populations. The aim of the present study was to investigate whether opioid agonists (morphine, alpha(S1)-casomorphin and ethylketocyclazocine) may have a direct action on the secretion of antibodies and cytokines by multiple myeloma-derived cell lines and normal CD19+ B-lymphocytes. Our results show that opioids modulate antibody and cytokine secretion by multiple myeloma cells in a cell line-dependent and opioid receptor-independent manner, while they decrease antibody secretion by normal B-lymphocytes. Furthermore, they decrease the proliferation rate of multiple myeloma cells through opioid receptor activation. Our data suggest two different mechanisms of action of opioids, mediated by different signaling pathways: an early non-opioid receptor-related effect, modulating the constitutive immunoglobulin and cytokine secretion, and a long-term receptor-mediated action on cell growth. These data suggest a further opioid implication in the control of humoral immunity.

Collaboration


Dive into the Efstathia Bakogeorgou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge