Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Efthimios Kaxiras is active.

Publication


Featured researches published by Efthimios Kaxiras.


Nano Letters | 2014

Graphene/MoS2 Hybrid technology for large-scale two-dimensional electronics

Lili Yu; Yi Hsien Lee; Xi Ling; Elton J. G. Santos; Yong Cheol Shin; Y. Lin; Madan Dubey; Efthimios Kaxiras; Jing Kong; Han Wang; Tomas Palacios

Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.


Physical Review B | 1998

INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES

João F. Justo; Martin Z. Bazant; Efthimios Kaxiras; Vasily V. Bulatov; Sidney Yip

We develop an empirical potential for silicon which represents a considerable improvement over existing models in describing local bonding for bulk defects and disordered phases. The model consists of two- and three-body interactions with theoretically motivated functional forms that capture chemical and physical trends as explained in a companion paper. The numerical parameters in the functional form are obtained by fitting to a set of ab initio results from quantum-mechanical calculations based on density-functional theory in the local-density approximation, which include various bulk phases and defect structures. We test the potential by applying it to the relaxation of point defects, core properties of partial dislocations and the structure of disordered phases, none of which are included in the fitting procedure. For dislocations, our model makes predictions in excellent agreement with ab initio and tight-binding calculations. It is the only potential known to describe both the 30°- and 90°-partial dislocations in the glide set


Nano Letters | 2013

Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage

Georgios A. Tritsaris; Efthimios Kaxiras; Sheng Meng; Enge Wang

111%. The structural and thermodynamic properties of the liquid and amorphous phases are also in good agreement with experimental and ab initio results. Our potential is capable of simulating a quench directly from the liquid to the amorphous phase, and the resulting amorphous structure is more realistic than with existing empirical preparation methods. These advances in transferability come with no extra computational cost, since force evaluation with our model is faster than with the popular potential of Stillinger-Weber, thus allowing reliable atomistic simulations of very large atomic systems. @S0163-1829~98!04026-0#


Nano Letters | 2013

Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates.

Wei Chen; Elton J. G. Santos; Wenguang Zhu; Efthimios Kaxiras; Zhenyu Zhang

The energy density of Li-ion batteries depends critically on the specific charge capacity of the constituent electrodes. Silicene, the silicon analogue to graphene, being of atomic thickness could serve as high-capacity host of Li in Li-ion secondary batteries. In this work, we employ first-principles calculations to investigate the interaction of Li with Si in model electrodes of free-standing single-layer and double-layer silicene. More specifically, we identify strong binding sites for Li, calculate the energy barriers accompanying Li diffusion, and present our findings in the context of previous theoretical work related to Li-ion storage in other structural forms of silicon: the bulk and nanowires. The binding energy of Li is ~2.2 eV per Li atom and shows small variation with respect to Li content and silicene thickness (one or two layers) while the barriers for Li diffusion are relatively low, typically less than 0.6 eV. We use our theoretical findings to assess the suitability of two-dimensional silicon in the form of silicene layers for Li-ion storage.


ieee international conference on high performance computing data and analytics | 2013

Multiphysics simulations: Challenges and opportunities

David E. Keyes; Lois Curfman McInnes; Carol S. Woodward; William Gropp; Eric Myra; Michael Pernice; John B. Bell; Jed Brown; Alain Clo; Jeffrey M. Connors; Emil M. Constantinescu; Donald Estep; Kate Evans; Charbel Farhat; Ammar Hakim; Glenn E. Hammond; Glen A. Hansen; Judith C. Hill; Tobin Isaac; Kirk E. Jordan; Dinesh K. Kaushik; Efthimios Kaxiras; Alice Koniges; Kihwan Lee; Aaron Lott; Qiming Lu; John Harold Magerlein; Reed M. Maxwell; Michael McCourt; Miriam Mehl

Using first-principles calculations within density functional theory, we investigate the electronic and chemical properties of a single-layer MoS(2) adsorbed on Ir(111), Pd(111), or Ru(0001), three representative transition metal substrates having varying work functions but each with minimal lattice mismatch with the MoS(2) overlayer. We find that, for each of the metal substrates, the contact nature is of Schottky-barrier type, and the dependence of the barrier height on the work function exhibits a partial Fermi-level pinning picture. Using hydrogen adsorption as a testing example, we further demonstrate that the introduction of a metal substrate can substantially alter the chemical reactivity of the adsorbed MoS(2) layer. The enhanced binding of hydrogen, by as much as ~0.4 eV, is attributed in part to a stronger H-S coupling enabled by the transferred charge from the substrate to the MoS(2) overlayer, and in part to a stronger MoS(2)-metal interface by the hydrogen adsorption. These findings may prove to be instrumental in future design of MoS(2)-based electronics, as well as in exploring novel catalysts for hydrogen production and related chemical processes.


Physical Review B | 2011

Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures

Martin Heiss; Sonia Conesa-Boj; Jun Ren; Hsiang-Han Tseng; Adam Gali; Andreas Rudolph; Emanuele Uccelli; F. Peiró; Joan Ramon Morante; Dieter Schuh; Elisabeth Reiger; Efthimios Kaxiras; Jordi Arbiol; Anna Fontcuberta i Morral

We consider multiphysics applications from algorithmic and architectural perspectives, where “algorithmic” includes both mathematical analysis and computational complexity, and “architectural” includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities.


New Journal of Physics | 2011

Properties of Nitrogen-Vacancy Centers in Diamond: The Group Theoretic Approach

Jeronimo R. Maze; Adam Gali; Emre Togan; Yiwen Chu; Alexei Trifonov; Efthimios Kaxiras; Mikhail D. Lukin

A method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence of wurtzite GaAs is consistent with a band gap of 1.5 eV. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the bulk GaAs band gap, while regions composed of a nonperiodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to determine the band alignment between these two crystalline phases. Our first-principles electronic structure calculations within density functional theory, employing a hybrid-exchange functional, predict band offsets and effective masses in good agreement with experimental results.


Physical Review Letters | 2009

Topological Frustration in Graphene Nanoflakes: Magnetic Order and Spin Logic Devices

Wei L. Wang; Oleg V. Yazyev; Sheng Meng; Efthimios Kaxiras

We present a procedure that makes use of group theory to analyze and predict the main properties of the negatively charged nitrogen-vacancy (NV) center in diamond. We focus on the relatively low temperature limit where both the spin–spin and spin–orbit effects are important to consider. We demonstrate that group theory may be used to clarify several aspects of the NV structure, such as ordering of the singlets in the (e2) electronic configuration and the spin–spin and spin–orbit interactions in the (ae) electronic configuration. We also discuss how the optical selection rules and the response of the center to electric field can be used for spin–photon entanglement schemes. Our general formalism is applicable to a broad class of local defects in solids. The present results have important implications for applications in quantum information science and nanomagnetometry.


Nano Letters | 2012

Reactive Flow in Silicon Electrodes Assisted by the Insertion of Lithium

Kejie Zhao; Georgios A. Tritsaris; Matt Pharr; Wei L. Wang; Onyekwelu U. Okeke; Zhigang Suo; Joost J. Vlassak; Efthimios Kaxiras

Magnetic order in graphene-related structures can arise from size effects or from topological frustration. We introduce a rigorous classification scheme for the types of finite graphene structures (nanoflakes) which lead to large net spin or to antiferromagnetic coupling between groups of electron spins. Based on this scheme, we propose specific examples of structures that can serve as the fundamental (NOR and NAND) logic gates for the design of high-density ultrafast spintronic devices. We demonstrate, using ab initio electronic structure calculations, that these gates can in principle operate at room temperature with very low and correctable error rates.


Physical Review B | 2008

Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors

Adam Gali; Maria Fyta; Efthimios Kaxiras

In the search for high-energy density materials for Li-ion batteries, silicon has emerged as a promising candidate for anodes due to its ability to absorb a large number of Li atoms. Lithiation of Si leads to large deformation and concurrent changes in its mechanical properties, from a brittle material in its pure form to a material that can sustain large inelastic deformation in the lithiated form. These remarkable changes in behavior pose a challenge to theoretical treatment of the material properties. Here, we provide a detailed picture of the origin of changes in the mechanical properties, based on first-principles calculations of the atomic-scale structural and electronic properties in a model amorphous silicon (a-Si) structure. We regard the reactive flow of lithiated silicon as a nonequilibrium process consisting of concurrent Li insertion driven by unbalanced chemical potential and flow driven by deviatoric stress. The reaction enables the material to flow at a lower level of stress. Our theoretical model is in excellent quantitative agreement with experimental measurements of lithiation-induced stress on a Si thin film.

Collaboration


Dive into the Efthimios Kaxiras's collaboration.

Top Co-Authors

Avatar

Sheng Meng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Melchionna

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Gali

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Maria Fyta

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge