Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Egbert Flory is active.

Publication


Featured researches published by Egbert Flory.


Nature Medicine | 2012

SAMHD1 restricts HIV-1 infection in resting CD4 + T cells

Hanna-Mari Baldauf; Xiaoyu Pan; Elina Erikson; Sarah Schmidt; Waaqo Daddacha; Manja Burggraf; Kristina Schenkova; Ina Ambiel; Guido H. Wabnitz; Thomas Gramberg; Sylvia Panitz; Egbert Flory; Nathaniel R. Landau; Serkan Sertel; Frank Rutsch; Felix Lasitschka; Baek Kim; Renate König; Oliver T. Fackler; Oliver T. Keppler

Unlike activated CD4+ T cells, resting CD4+ T cells are highly resistant to productive HIV-1 infection. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4+ T cells. SAMHD1 is abundantly expressed in resting CD4+ T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4+ T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4+ T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4+ T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1.


Journal of Biological Chemistry | 2006

APOBEC3 Proteins Inhibit Human LINE-1 Retrotransposition

Heide Muckenfuss; Matthias Hamdorf; Ulrike Held; Mario Perković; Johannes Löwer; Klaus Cichutek; Egbert Flory; Gerald G. Schumann; Carsten Münk

The human cytidine deaminase family APOBEC3 represents a novel group of proteins in the field of innate defense mechanisms that has been shown to be active against a variety of retroviruses. Here we examined whether members of the APO-BEC3 family have an impact on retrotransposition of human long interspersed nuclear elements (LINE-1s or L1s). Using a retrotransposition reporter assay in HeLa cells, we demonstrate that in the presence of transiently transfected APOBEC3A, L1 retrotransposition frequency was reduced by up to 85%. Although APOBEC3G and -3H did not influence L1 retrotransposition notably, expression of APOBEC3B, -3C, and -3F inhibited transposition by ∼75%. Although reverse transcription of L1s occurs in the nucleus and APOBEC3 proteins are believed to act via DNA deamination during reverse transcription, activity against L1 retrotransposition was not correlated with nuclear localization of APOBEC3s. We demonstrate that APOBEC3C and APOBEC3B were endogenously expressed in HeLa cells. Accordingly, down-regulation of APOBEC3C by RNA interference enhanced L1 retrotransposition by ∼78%. Sequence analyses of de novo L1 retrotransposition events that occurred in the presence of overexpressed APOBEC3 proteins as well as the analyses of pre-existing endogenous L1 elements did not reveal an enhanced rate of G-to-A transitions, pointing to a mechanism independent of DNA deamination. This study presents evidence for a role of host-encoded APOBEC3 proteins in the regulation of L1 retrotransposition.


PLOS Pathogens | 2011

SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutieres Syndrome Are Highly Susceptible to HIV-1 Infection

André Berger; Andreas F. R. Sommer; Jenny Zwarg; Matthias Hamdorf; Karin Welzel; Nicole Esly; Sylvia Panitz; Andreas Reuter; Irene Ramos; Asavari Jatiani; Lubbertus C. F. Mulder; Ana Fernandez-Sesma; Frank Rutsch; Viviana Simon; Renate König; Egbert Flory

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.


Proceedings of the National Academy of Sciences of the United States of America | 2005

The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein

Martin Löchelt; Fabian Romen; Patrizia Bastone; Heide Muckenfuss; Nadine Kirchner; Yong-Boum Kim; Uwe Truyen; Uwe Rösler; Marion Battenberg; Ali Saib; Egbert Flory; Klaus Cichutek; Carsten Münk

Genome hypermutation of different orthoretroviruses by cellular cytidine deaminases of the APOBEC3 family during reverse transcription has recently been observed. Lentiviruses like HIV-1 have acquired proteins preventing genome editing in the newly infected cell. Here we show that feline foamy virus (FFV), a typical member of the foamy retrovirus subfamily Spumaretrovirinae, is also refractory to genome deamination. APOBEC3-like FFV genome editing in APOBEC3-positive feline CRFK cells only occurs when the accessory FFV Bet protein is functionally inactivated. Editing of bet-deficient FFV genomes is paralleled by a strong decrease in FFV titer. In contrast to lentiviruses, cytidine deamination already takes place in APOBEC3-positive FFV-producing cells, because edited proviral DNA genomes are consistently present in released particles. By cloning the feline APOBEC3 orthologue, we found that its homology to the second domain of human APOBEC3F is 48%. Expression of feline APOBEC3 in APOBEC3-negative human 293T cells reproduced the effects seen in homologous CRFK cells: Bet-deficient FFV displayed severely reduced titers, high-level genome editing, reduced particle release, and suppressed Gag processing. Although WT Bet efficiently preserved FFV infectivity and genome integrity, it sustained particle release and Gag processing only when fe3 was moderately expressed. Similar to lentiviral Vif proteins, FFV Bet specifically bound feline APOBEC3. In particles from Bet-deficient FFV, feline APOBEC3 was clearly present, whereas its foamy viral antagonist Bet was undetectable in purified WT particles. This is the first report that, in addition to lentiviruses, the foamy viruses also developed APOBEC3-counter-acting proteins.


American Journal of Pathology | 1999

Anoxia-Induced Up-Regulation of Interleukin-8 in Human Malignant Melanoma : A Potential Mechanism for High Tumor Aggressiveness

Manfred Kunz; Anke Hartmann; Egbert Flory; Atiye Toksoy; Dirk Koczan; Hans-Jürgen Thiesen; Nafoumi Mukaida; Manfred Neumann; Ulf R. Rapp; Eva-Bettina Bröcker; Reinhard Gillitzer

Besides its proinflammatory properties, interleukin-8 (IL-8) has been suggested as an important promoter for melanoma growth. To study the role of IL-8 in melanoma biology, we determined the in vivo expression of IL-8 mRNA by in situ hybridization in primary melanoma lesions and metastases. High levels of melanoma cell-associated IL-8-specific transcripts were exclusively detected in close vicinity of necrotic/hypoxic areas of melanoma metastases, whereas both in primary melanomas and in non-necrotic metastases IL-8 expression was low or absent. To analyze further the up-regulation of IL-8 mRNA expression in necrotic/hypoxic tumor areas, human melanoma cell lines of different aggressiveness exposed to severe hypoxic stress (anoxia) were used as an in vitro model. Anoxia induced IL-8 mRNA and protein expression in the highly aggressive/metastatic cell lines MV3 and BLM but not in the low aggressive cell lines IF6 and 530. As shown by IL-8 promoter-dependent reporter gene analysis and mRNA stability assays, elevated mRNA levels in melanoma cells were due to both enhanced transcriptional activation and enhanced IL-8 mRNA stability. Interestingly, transcriptional activation was abolished by mutations in the AP-1 and the NF-kappaB-like binding motifs, indicating that both sites are critical for IL-8 induction. Concomitantly, anoxia induced an enhanced binding activity of AP-1 and NF-kappaB transcription factors only in the highly aggressive cells. From our in vitro and in vivo data we suggest that anoxia-induced regulation of IL-8 might be a characteristic feature of aggressive tumor cells, thus indicating that IL-8 might play a critical role for tumor progression in human malignant melanoma.


Journal of Biological Chemistry | 1998

The GABP-responsive Element of the Interleukin-2 Enhancer Is Regulated by JNK/SAPK-activating Pathways in T Lymphocytes

Angelika Hoffmeyer; Andris Avots; Egbert Flory; Christoph K. Weber; Edgar Serfling; Ulf R. Rapp

T cell activation leads via multiple intracellular signaling pathways to rapid induction of interleukin-2 (IL-2) expression, which can be mimicked by costimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and ionomycin. We have identified a distal IL-2 enhancer regulated by the Raf-MEK-ERK signaling pathway, which can be induced by TPA/ionomycin treatment. It contains a dyad symmetry element (DSE) controlled by the Ets-like transcription factor GA-binding protein (GABP), a target of activated ERK. TPA/ionomycin treatment of T cells stimulates both mitogen-activated ERK, as well as the stress-activated mitogen-activated protein kinase family members JNK/SAPK and p38. In this study, we investigated the contribution of the stress-activated pathways to the induction of the distal IL-2 enhancer. We show that JNK- but not p38-activating pathways regulate the DSE activity. Furthermore, the JNK/SAPK signaling pathway cooperates with the Raf-MEK-ERK cascade in TPA/ionomycin-induced DSE activity. In T cells, overexpression of SPRK/MLK3, an activator of JNK/SAPK, strongly induces DSE-dependent transcription and dominant negative kinases of SEK and SAPK impair TPA/ionomycin-induced DSE activity. Blocking both ERK and JNK/SAPK pathways abolishes the DSE induction. The inducibility of the DSE is strongly dependent on the Ets-core motifs, which are bound by GABP. Both subunits of GABP are phosphorylated upon JNK activation in vivo and three different isoforms of JNK/SAPK, but not p38, in vitro. Our data suggest that GABP is targeted by signaling events from both ERK and JNK/SAPK pathways. GABP therefore is a candidate for signal integration and regulation of IL-2 transcription in T lymphocytes.


Molecular and Cellular Biology | 1997

GABP Factors Bind to a Distal Interleukin 2 (IL-2) Enhancer and Contribute to c-Raf-Mediated Increase in IL-2 Induction

Andris Avots; Angelika Hoffmeyer; Egbert Flory; Alexander Cimanis; Ulf R. Rapp; Edgar Serfling

Triggering of the T-cell receptor-CD3 complex activates two major signal cascades in T lymphocytes, (i) Ca2+-dependent signal cascades and (ii) protein kinase cascades. Both signal cascades contribute to the induction of the interleukin 2 (IL-2) gene during T-cell activation. Prominent protein kinase cascades are those that activate mitogen-activated protein (MAP) kinases. We show here that c-Raf, which is at the helm of the classic MAP-Erk cascade, contributes to IL-2 induction through a distal enhancer element spanning the nucleotides from positions -502 to -413 in front of the transcriptional start site of the IL-2 gene. Induction of this distal IL-2 enhancer differs from induction of the proximal IL-2 promoter-enhancer, since it is induced by phorbol esters alone and independent from Ca2+ signals. In DNA-protein binding studies, we detected the binding of transcription factors GABP alpha and -beta to a dyad symmetry element (DSE) of the distal enhancer, which is formed by palindromic binding sites of Ets-like factors. Introduction of point mutations suppressing GABP binding to the DSE interfered with the induction of the distal enhancer and the entire IL-2 promoter-enhancer, while overexpression of both GABP factors enhanced the IL-2 promoter-enhancer induction. Overexpression of BXB, a constitutive active version of c-Raf, and of further members of the Ras-Raf-Erk signal cascade exerted an increase of GABP-mediated promoter-enhancer induction. In conjunction with previously published data on c-Raf-induced phosphorylation of GABP factors (E. Flory, A. Hoffmeyer, U. Smola, U. R. Rapp, and J. T. Bruder, J. Virol. 70:2260-2268, 1996), these results indicate a contribution of GABP factors to the Raf-mediated enhancement of IL-2 induction during T-cell activation.


Hypertension | 2001

Activation of Cardiac c-Jun NH2-Terminal Kinases and p38-Mitogen–Activated Protein Kinases With Abrupt Changes in Hemodynamic Load

Thomas Fischer; Stephan Ludwig; Egbert Flory; Stepan Gambaryan; Krishna Singh; Peter V. Finn; Marc A. Pfeffer; Ralph A. Kelly; Janice M. Pfeffer

Abstract—The role of mitogen-activated protein kinase (MAPK) pathways as signal transduction intermediates of hemodynamic stress leading to cardiac hypertrophy in the adult heart is not fully established. In a rat model of pressure-overload hypertrophy, we examined whether activation of MAPK pathways, namely, the extracellular signal-regulated protein kinase (ERK), c-Jun NH2-terminal kinase (JNK), and the p38-MAPK pathways, occurs during rapid changes in hemodynamic load in vivo. A slight activation of ERK2 and marked increases in JNK1 and p38-MAPK activities were observed 30 minutes after aortic banding. The increase in p38-MAPK activity was accompanied by an increase in the phosphorylation of the p38 substrate MAPK-activated protein kinases 2 and 3. Activation of these kinases was coincident with an increase in phosphorylation of c-Jun and activating transcription factor-2 (ATF-2) and enhanced DNA binding of activator protein-1 factors. Thus, hemodynamic stress of the adult rat heart in vivo results in rapid activation of several parallel MAPK kinase cascades, particularly stress-activated MAPK and p38-MAPK and their target transcription factors c-Jun and ATF-2.


Nucleic Acids Research | 2007

Sp1 and Sp3 regulate basal transcription of the human APOBEC3G gene

Heide Muckenfuss; Julia K. Kaiser; Erika Krebil; Marion Battenberg; Christina Schwer; Klaus Cichutek; Carsten Münk; Egbert Flory

APOBEC3G (A3G), a member of the recently discovered family of human cytidine deaminases, is expressed in peripheral blood lymphocytes and has been shown to be active against HIV-1 and other retroviruses. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G. Transcriptional start sites were identified by 5′-rapid amplification of cDNA ends analysis. Luciferase reporter assays demonstrated that a 1025 bp A3G promoter sequence (from −959 to +66 relative to the major transcriptional start site) displayed constitutive promoter activity. In T cells, the A3G promoter was not inducible by mitogenic stimulation, interferon treatment or expression of HIV-1 proteins. Using a series of 5′ deletion promoter constructs in luciferase reporter assays, we identified a 180 bp region that was sufficient for full promoter activity. Transcriptional activity of this A3G core promoter was dependent on a GC-box (located at position −87/−78 relative to the major transcriptional start site) and was abolished after mutation of this DNA element. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated that the identified GC-box represented a binding site for the ubiquitous transcription factors specificity protein (Sp) 1 and Sp3.


Stem Cells | 2011

PKCδ-induced PU.1 phosphorylation promotes hematopoietic stem cell differentiation to dendritic cells.

Matthias Hamdorf; André Berger; Silke Schüle; Jens Reinhardt; Egbert Flory

Human CD34+ hematopoietic stem cells (HSCs) exhibit the potential to differentiate into a variety of specialized blood cells. The distinct intracellular mechanisms that control cell fate and lineage commitment of these multipotent cells are not well defined. In this study, we investigate and modulate the signaling processes during HSC differentiation toward myeloid dendritic cells (mDCs). DC differentiation induced by the cytokines Granulocyte macrophage colony‐stimulating factor (GM‐CSF) and Interleukin‐4 (IL‐4) led to activation of the Extracellular‐signal‐regulated kinase (ERK), protein kinase C (PKC), and Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) but not the SAPK/c‐Jun NH2‐terminal kinase and p38 mitogen‐activated protein kinase signaling pathways. From the activated signaling pathways the PKC isoform δ was found to phosphorylate the transcription factor PU.1, which is described as one of the key factors for myeloid HSC differentiation. On molecular level, PKCδ regulated PU.1 activity by affecting its transactivation activity, whereas its DNA binding activity remained unaffected. This was accompanied by PKCδ‐induced phosphorylation of the PU.1 transactivation domain. Furthermore, treatment with PKC‐ and ERK1/2‐specific signaling inhibitors impaired both HSC differentiation toward mDCs as well as phosphorylation‐mediated transactivation activity of PU.1. Taken together, these results provide new insights into the molecular mechanisms promoting the differentiation process of HSCs toward mDCs and introduce the PKC isoform δ as critical mediator. STEM CELLS 2011;29:297–306

Collaboration


Dive into the Egbert Flory's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf R. Rapp

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

H. Wege

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Münk

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge