Egbert Mundt
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Egbert Mundt.
Journal of General Virology | 1995
Egbert Mundt; Jörg Beyer; Hermann J. Müller
Infectious bursal disease virus (IBDV), a member of the Birnaviridae, specifies two genomic double-stranded RNAs, segment A and segment B. Segment A encodes a 110 kDa polyprotein which is processed into virus proteins VP2, VP3 and VP4. A second open reading frame (ORF), designated ORF A-2, immediately preceding and partially overlapping the 110 kDa protein gene has also been described. After prokaryotic expression of this ORF and immunization of rabbits with the expressed protein we obtained reagents that allowed the identification of the ORF A-2 gene product in IBDV-infected cells. The ORF A-2 protein exhibits an apparent molecular mass of 21 kDa which is larger than the size of 16.5 kDa calculated from the deduced amino acid sequence. Immunofluorescence studies demonstrated the presence of the ORF A-2 protein in bursa samples from IBDV-infected chicken. In summary, the IBDV ORF A-2 product represents the fifth IBDV protein described. Therefore, we propose to designate it as IBDV VP5.
PLOS Computational Biology | 2009
Florent E. Angly; Dana Willner; Alejandra Prieto-Davó; Robert Edwards; Robert Schmieder; Rebecca Vega-Thurber; Dionysios A. Antonopoulos; Katie L. Barott; Matthew T. Cottrell; Christelle Desnues; Elizabeth A. Dinsdale; Mike Furlan; Matthew Haynes; Matthew R. Henn; Yongfei Hu; David L. Kirchman; Tracey McDole; John D. McPherson; Folker Meyer; R. Michael Miller; Egbert Mundt; Robert K. Naviaux; Beltran Rodriguez-Mueller; Rick Stevens; Linda Wegley; Lixin Zhang; Baoli Zhu; Forest Rohwer
Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.
The EMBO Journal | 2000
Christoph Birghan; Egbert Mundt; Alexander E. Gorbalenya
We have identified a region related to the protease domain of bacterial and organelle ATP‐dependent Lon proteases in virus protein 4 (VP4) of infectious bursal disease virus strain P2 (IBDVP2), a two‐segmented double‐stranded RNA virus. Unlike canonical Lons, IBDVP2 VP4 possesses a proteinase activity though it lacks an ATPase domain. Ser652 and Lys692 of IBDVP2 VP4 are conserved across the Lon/VP4 family and are essential for catalysis. Lys692 has the properties of a general base, increasing the nucleophilicity of Ser652; a similar catalytic dyad may function in the other Lons. VP4 can cleave in trans and is responsible for the interdomain proteolytic autoprocessing of the pVP2– VP4–VP3 polyprotein encoded by RNA segment A. VP2, which is later derived from pVP2, and VP3 are major capsid proteins of birnaviruses. Results of the characterization of a range of the IBDVP2 VP4 mutants in cell cultures implicate VP4 in trans‐activation of the synthesis of VP1, putative RNA‐dependent RNA polymerase encoded by RNA segment B, and in cleavage rate‐dependent control of process(es) crucial for the generation of the infectious virus progeny.
Journal of General Virology | 1999
Angela Römer-Oberdörfer; Egbert Mundt; Teshome Mebatsion; Ursula J. Buchholz; Thomas C. Mettenleiter
Recombinant lentogenic Newcastle disease virus (NDV) of the vaccine strain Clone-30 was reproducibly generated after simultaneous expression of antigenome-sense NDV RNA and NDV nucleoprotein, phosphoprotein and RNA-dependent RNA polymerase from plasmids transfected into cells stably expressing T7 RNA polymerase. For this purpose, the genome of Clone-30, comprising 15186 nt, was cloned and sequenced prior to assembly into a full-length cDNA clone under control of a T7 RNA polymerase promoter. Recombinant virus was amplified by inoculation of transfection supernatant into the allantoic cavity of embryonated specific-pathogen-free (SPF) chicken eggs. Two marker restriction sites comprising a total of five nucleotide changes artificially introduced into noncoding regions were present in the progeny virus. The recombinant NDV was indistinguishable from the parental wild-type virus with respect to its growth characteristics in cell culture and in embryonated eggs. Moreover, an intracerebral pathogenicity index of 0.29 was obtained for both viruses as determined by intracerebral inoculation of day-old SPF chickens, proving that the recombinant NDV is a faithful copy of the parental vaccine strain of NDV.
Virus Genes | 1999
Heike Schütze; Egbert Mundt; Thomas C. Mettenleiter
The complete nucleotide sequence of the fish rhabdovirus viral hemorrhagic septicemia virus (VHSV) has been determined. The genome comprises 11158 bases and contains six long open reading frames encoding the nucleoprotein N, phosphoprotein P, matrix protein M, glycoprotein G, nonstructural viral protein NV, and polymerase L. Genes are arranged in the order 3′-N-P-M-G-NV-L-5′. The exact 3′ and 5′ ends were determined after RNA-oligonucleotide ligation or RACE. They show inverse complementarity as in other rhabdovirus genomes. Nucleotide and deduced amino acid sequences exhibit significant homology to corresponding sequences in the related fish rhabdovirus infectious hematopoietic necrosis virus.
Journal of General Virology | 1999
Egbert Mundt
Two types of strains of serotype I of infectious bursal disease virus (IBDV) have been described, on the basis of their ability (IBDV-TC) or inability (IBDV-BU) to infect chicken embryonic cells in culture. However, both types infect B lymphocytes in the bursa of Fabricius of young chickens. To determine the molecular basis for tissue culture infectivity, virus recombinants with chimeric segments A were constructed from IBDV-TC and IBDV-BU by reverse genetics. The region responsible for the different phenotypes was located in VP2. Site-directed mutagenesis identified single amino acids that are responsible for the restriction in infectivity. However, the appropriate amino acid exchanges are strain-specific.
Journal of General Virology | 2002
A.A. van Loon; N. de Haas; I. Zeyda; Egbert Mundt
Reverse genetics technology offers the possibility to study the influence of particular amino acids of infectious bursal disease virus (IBDV) on adaptation to tissue culture. Genomic segments A and B of the very virulent (vv) IBDV field strain UK661 were completely cloned and sequenced, and the strain was rescued from full-length cDNA copies of both segments (UK661rev). Using site-directed mutagenesis, alteration of a single amino acid in the segment A-encoded VP2 (A284T) resulted in a limited capacity of UK661 to replicate in tissue culture. Additional alteration of a second amino acid (Q253H) increased replication efficiency in tissue culture. The second mutant (UK661-Q253H-A284T) was used to infect chickens and results were compared with UK661 and UK661rev. Whereas UK661 and UK661rev induced 100% morbidity and 50-80% mortality, UK661-Q253H-A284T proved to be strikingly attenuated, producing neither morbidity nor mortality. Moreover, UK661-Q253H-A284T-infected animals were protected from challenge infection. Thus, alteration of two specific amino acids in the VP2 region of IBDV resulted in tissue culture adaptation and attenuation in chickens of vvIBDV. The data demonstrate that VP2 plays a decisive role in pathogenicity of IBDV.
Journal of Virology | 2001
Barbara G. Klupp; Harald Granzow; Egbert Mundt; Thomas C. Mettenleiter
ABSTRACT Herpesvirus envelopment is a two-step process which includes acquisition of a primary envelope resulting from budding of intranuclear capsids through the inner nuclear membrane. Fusion with the outer leaflet of the nuclear membrane releases nucleocapsids into the cytoplasm, which then gain their final envelope by budding intotrans-Golgi vesicles. It has been shown that the UL34 gene product is required for primary envelopment of the alphaherpesvirus pseudorabies virus (PrV) (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 74:10063–10073, 2000). For secondary envelopment, several virus-encoded PrV proteins are necessary, including glycoproteins E, I, and M (A. R. Brack, J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364–5372, 1999). We show here that the product of the UL37 gene of PrV, which is a constituent of mature virions, is involved in secondary envelopment. Replication of a UL37 deletion mutant, PrV-ΔUL37, was impaired in normal cells; this defect could be complemented on cells stably expressing UL37. Ultrastructural analysis demonstrated that intranuclear capsid maturation and budding of capsids into and release from the perinuclear space were unimpaired. However, secondary envelopment was drastically reduced. Instead, apparently DNA-filled capsids accumulated in the cytoplasm in large aggregates similar to those observed in the absence of glycoproteins E/I and M but lacking the surrounding electron-dense tegument material. Although displaying an ordered structure, capsids did not contact each other directly. We postulate that the UL37 protein is necessary for correct addition of other tegument proteins, which are required for secondary envelopment. In the absence of the UL37 protein, capsids interact with each other through unknown components but do not acquire the electron-dense tegument which is normally found around wild-type capsids during and after secondary envelopment. Thus, apposition of the UL37 protein to cytoplasmic capsids may be crucial for the addition of other tegument proteins, which in turn are able to interact with viral glycoproteins to mediate secondary envelopment.
Journal of Virology | 2003
Martina Kopp; Harald Granzow; Walter Fuchs; Barbara G. Klupp; Egbert Mundt; Axel Karger; Thomas C. Mettenleiter
ABSTRACT Homologs of the small tegument protein encoded by the UL11 gene of herpes simplex virus type 1 are conserved throughout all herpesvirus subfamilies. However, their function during viral replication has not yet been conclusively shown. Using a monospecific antiserum and an appropriate viral deletion and rescue mutant, we identified and functionally characterized the UL11 protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL11 encodes a protein with an apparent molecular mass of 10 to 13 kDa that is primarily detected at cytoplasmic membranes during viral replication. In the absence of the UL11 protein, viral titers were decreased approximately 10-fold and plaque sizes were reduced by 60% compared to wild-type virus. Intranuclear capsid maturation and nuclear egress resulting in translocation of DNA-containing capsids into the cytoplasm were not detectably affected. However, in the absence of the UL11 protein, intracytoplasmic membranes were distorted. Moreover, in PrV-ΔUL11-infected cells, capsids accumulated in the cytoplasm and were often found associated with tegument in aggregated structures such as had previously been demonstrated in cells infected with a PrV triple-mutant virus lacking glycoproteins E, I, and M (A. R. Brack, J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Thus, the PrV UL11 protein, like glycoproteins E, I, and M, appears to be involved in secondary envelopment.
Avian Pathology | 2012
H. Müller; Egbert Mundt; Nicolas Eterradossi; M. R. Islam
Infectious bursal disease virus (IBDV) is the aetiological agent of the acute and highly contagious infectious bursal disease (IBD) or “Gumboro disease”. IBD is one of the economically most important diseases that affects commercially produced chickens worldwide. Along with strict hygiene management of poultry farms, vaccination programmes with inactivated and live attenuated viruses have been used to prevent IBD. Live vaccines show a different degree of attenuation; many of them may cause bursal atrophy and thus immunosuppression with poor immune response to vaccination against other pathogens and an increase in vulnerability to various types of infections as possible consequences. Depending on their intrinsic characteristics or on the vaccination procedures, some of the vaccines may not induce full protection against the very virulent IBDV strains and antigenic variants observed in the last three decades. As chickens are most susceptible to IBDV in their first weeks of life, active immunity to the virus has to be induced early after hatching. However, maternally derived IBDV-specific antibodies may interfere with early vaccination with live vaccines. Thus new technologies and second-generation vaccines including rationally designed and subunit vaccines have been developed. Recently, live viral vector vaccines have been licensed in several countries and are reaching the market. Here, the current status of IBD vaccines is discussed.