Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Egil Ferkingstad is active.

Publication


Featured researches published by Egil Ferkingstad.


Genome Biology | 2010

The Genomic HyperBrowser: inferential genomics at the sequence level

Geir Kjetil Sandve; Sveinung Gundersen; Halfdan Rydbeck; Ingrid K. Glad; Lars Holden; Marit Holden; Knut Liestøl; Trevor Clancy; Egil Ferkingstad; Morten Johansen; Vegard Nygaard; Eivind Tøstesen; Arnoldo Frigessi; Eivind Hovig

The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.


Energy Economics | 2011

Causal modeling and inference for electricity markets

Egil Ferkingstad; Anders Løland; Mathilde Wilhelmsen

How does dynamic price information flow among Northern European electricity spot prices and prices of major electricity generation fuel sources? We use time series models combined with new advances in causal inference to answer these questions. Applying our methods to weekly Nordic and German electricity prices, and oil, gas and coal prices, with German wind power and Nordic water reservoir levels as exogenous variables, we estimate a causal model for the price dynamics, both for contemporaneous and lagged relationships. In contemporaneous time, Nordic and German electricity prices are interlinked through gas prices. In the long run, electricity prices and British gas prices adjust themselves to establish the equilibrium price level, since oil, coal, continental gas and EUR/USD are found to be weakly exogenous.


Nucleic Acids Research | 2013

The Genomic HyperBrowser: an analysis web server for genome-scale data

Geir Kjetil Sandve; Sveinung Gundersen; Morten Johansen; Ingrid K. Glad; Krishanthi Gunathasan; Lars Holden; Marit Holden; Knut Liestøl; Ståle Nygård; Vegard Nygaard; Jonas Paulsen; Halfdan Rydbeck; Kai Trengereid; Trevor Clancy; Finn Drabløs; Egil Ferkingstad; Matúš Kalaš; Tonje G. Lien; Morten Beck Rye; Arnoldo Frigessi; Eivind Hovig

The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome.


Journal of The Royal Statistical Society Series C-applied Statistics | 2013

A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

Ida Scheel; Egil Ferkingstad; Arnoldo Frigessi; Ola Haug; Mikkel Hinnerichsen; Elisabeth Meze-Hausken

Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models.


The Annals of Applied Statistics | 2008

Unsupervised empirical Bayesian multiple testing with external covariates

Egil Ferkingstad; Arnoldo Frigessi; Håvard Rue; Gudmar Thorleifsson; Augustine Kong

In an empirical Bayesian setting, we provide a new multiple testing method, useful when an additional covariate is available, that influences the probability of each null hypothesis being true. We measure the posterior significance of each test conditionally on the covariate and the data, leading to greater power. Using covariate-based prior information in an unsupervised fashion, we produce a list of significant hypotheses which differs in length and order from the list obtained by methods not taking covariate-information into account. Covariate-modulated posterior probabilities of each null hypothesis are estimated using a fast approximate algorithm. The new method is applied to expression quantitative trait loci (eQTL) data.


Bioinformatics | 2011

Sequential Monte Carlo multiple testing

Geir Kjetil Sandve; Egil Ferkingstad; Ståle Nygård

Motivation: In molecular biology, as in many other scientific fields, the scale of analyses is ever increasing. Often, complex Monte Carlo simulation is required, sometimes within a large-scale multiple testing setting. The resulting computational costs may be prohibitively high. Results: We here present MCFDR, a simple, novel algorithm for false discovery rate (FDR) modulated sequential Monte Carlo (MC) multiple hypothesis testing. The algorithm iterates between adding MC samples across tests and calculating intermediate FDR values for the collection of tests. MC sampling is stopped either by sequential MC or based on a threshold on FDR. An essential property of the algorithm is that it limits the total number of MC samples whatever the number of true null hypotheses. We show on both real and simulated data that the proposed algorithm provides large gains in computational efficiency. Availability: MCFDR is implemented in the Genomic HyperBrowser (http://hyperbrowser.uio.no/mcfdr), a web-based system for genome analysis. All input data and results are available and can be reproduced through a Galaxy Pages document at: http://hyperbrowser.uio.no/mcfdr/u/sandve/p/mcfdr. Contact: [email protected]


Electronic Journal of Statistics | 2015

Improving the INLA approach for approximate Bayesian inference for latent Gaussian models

Egil Ferkingstad; Håvard Rue

AbstractWeintroduceanewcopula-basedcorrectionforgeneralizedlinearmixedmodels(GLMMs)within the integrated nested Laplace approximation (INLA) approach for approximateBayesian inference for latent Gaussian models. GLMMs for Binomial and Poisson datawith many zeroes and low counts have been a somewhat difficult case for INLA, and thecase of binary data has been particularly problematic. Our new correction has been im-plemented as part of the R-INLA package, and adds only negligible computational cost.Empiricalevaluationsonbothrealandsimulateddataindicatethatthemethodworkswell.Keywords: Bayesian computation; copulas; generalized linear mixed models; integratednestedLaplaceapproximation;latentGaussianmodels 1 Introduction IntegratedNestedLaplaceApproximations(INLA)wereintroducedbyRue,MartinoCMcCulloch,SearleN2;:::;n,letProb(y


Genome Biology | 2008

Indirect genomic effects on survival from gene expression data

Egil Ferkingstad; Arnoldo Frigessi; Heidi Lyng

In cancer, genes may have indirect effects on patient survival, mediated through interactions with other genes. Methods to study the indirect effects that contribute significantly to survival are not available. We propose a novel methodology to detect and quantify indirect effects from gene expression data. We discover indirect effects through several target genes of transcription factors in cancer microarray data, pointing to genetic interactions that play a significant role in tumor progression.


BMC Genomics | 2011

The differential disease regulome

Geir Kjetil Sandve; Sveinung Gundersen; Halfdan Rydbeck; Ingrid K. Glad; Lars Holden; Marit Holden; Knut Liestøl; Trevor Clancy; Finn Drabløs; Egil Ferkingstad; Morten Johansen; Vegard Nygaard; Eivind Tøstesen; Arnoldo Frigessi; Eivind Hovig

BackgroundTranscription factors in disease-relevant pathways represent potential drug targets, by impacting a distinct set of pathways that may be modulated through gene regulation. The influence of transcription factors is typically studied on a per disease basis, and no current resources provide a global overview of the relations between transcription factors and disease. Furthermore, existing pipelines for related large-scale analysis are tailored for particular sources of input data, and there is a need for generic methodology for integrating complementary sources of genomic information.ResultsWe here present a large-scale analysis of multiple diseases versus multiple transcription factors, with a global map of over-and under-representation of 446 transcription factors in 1010 diseases. This map, referred to as the differential disease regulome, provides a first global statistical overview of the complex interrelationships between diseases, genes and controlling elements. The map is visualized using the Google map engine, due to its very large size, and provides a range of detailed information in a dynamic presentation format.The analysis is achieved through a novel methodology that performs a pairwise, genome-wide comparison on the cartesian product of two distinct sets of annotation tracks, e.g. all combinations of one disease and one TF.The methodology was also used to extend with maps using alternative data sets related to transcription and disease, as well as data sets related to Gene Ontology classification and histone modifications. We provide a web-based interface that allows users to generate other custom maps, which could be based on precisely specified subsets of transcription factors and diseases, or, in general, on any categorical genome annotation tracks as they are improved or become available.ConclusionWe have created a first resource that provides a global overview of the complex relations between transcription factors and disease. As the accuracy of the disease regulome depends mainly on the quality of the input data, forthcoming ChIP-seq based binding data for many TFs will provide improved maps. We further believe our approach to genome analysis could allow an advance from the current typical situation of one-time integrative efforts to reproducible and upgradable integrative analysis. The differential disease regulome and its associated methodology is available at http://hyperbrowser.uio.no.


GigaScience | 2017

GSuite HyperBrowser: Integrative analysis of dataset collections across the genome and epigenome

Boris Simovski; Daniel Vodák; Sveinung Gundersen; Diana Domanska; Abdulrahman Azab; Lars Holden; Marit Holden; Ivar Grytten; Knut Dagestad Rand; Finn Drabløs; Morten Johansen; Antonio Mora; Christin Lund-Andersen; Bastian Fromm; Ragnhild Eskeland; Odd S. Gabrielsen; Egil Ferkingstad; Sigve Nakken; Mads Bengtsen; Hildur Sif Thorarensen; Johannes Andreas Akse; Ingrid K. Glad; Eivind Hovig; Geir Kjetil Sandve

Abstract Background: Recent large-scale undertakings such as ENCODE and Roadmap Epigenomics have generated experimental data mapped to the human reference genome (as genomic tracks) representing a variety of functional elements across a large number of cell types. Despite the high potential value of these publicly available data for a broad variety of investigations, little attention has been given to the analytical methodology necessary for their widespread utilisation. Findings: We here present a first principled treatment of the analysis of collections of genomic tracks. We have developed novel computational and statistical methodology to permit comparative and confirmatory analyses across multiple and disparate data sources. We delineate a set of generic questions that are useful across a broad range of investigations and discuss the implications of choosing different statistical measures and null models. Examples include contrasting analyses across different tissues or diseases. The methodology has been implemented in a comprehensive open-source software system, the GSuite HyperBrowser. To make the functionality accessible to biologists, and to facilitate reproducible analysis, we have also developed a web-based interface providing an expertly guided and customizable way of utilizing the methodology. With this system, many novel biological questions can flexibly be posed and rapidly answered. Conclusions: Through a combination of streamlined data acquisition, interoperable representation of dataset collections, and customizable statistical analysis with guided setup and interpretation, the GSuite HyperBrowser represents a first comprehensive solution for integrative analysis of track collections across the genome and epigenome. The software is available at: https://hyperbrowser.uio.no.

Collaboration


Dive into the Egil Ferkingstad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eivind Hovig

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Lars Holden

Norwegian Computing Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marit Holden

Norwegian Computing Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Finn Drabløs

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge