Egon Willighagen
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Egon Willighagen.
Journal of Chemical Information and Computer Sciences | 2003
Christoph Steinbeck; Yongquan Han; Stefan Kuhn; Oliver Horlacher; Edgar Luttmann; Egon Willighagen
The Chemistry Development Kit (CDK) is a freely available open-source Java library for Structural Chemo- and Bioinformatics. Its architecture and capabilities as well as the development as an open-source project by a team of international collaborators from academic and industrial institutions is described. The CDK provides methods for many common tasks in molecular informatics, including 2D and 3D rendering of chemical structures, I/O routines, SMILES parsing and generation, ring searches, isomorphism checking, structure diagram generation, etc. Application scenarios as well as access information for interested users and potential contributors are given.
Current Pharmaceutical Design | 2006
Christoph Steinbeck; Christian Hoppe; Stefan Kuhn; Matteo Floris; Rajarshi Guha; Egon Willighagen
The Chemistry Development Kit (CDK) provides methods for common tasks in molecular informatics, including 2D and 3D rendering of chemical structures, I/O routines, SMILES parsing and generation, ring searches, isomorphism checking, structure diagram generation, etc. Implemented in Java, it is used both for server-side computational services, possibly equipped with a web interface, as well as for applications and client-side applets. This article introduces the CDKs new QSAR capabilities and the recently introduced interface to statistical software.
Journal of Chemical Information and Modeling | 2006
Rajarshi Guha; Michael T. Howard; Geoffrey R. Hutchison; Peter Murray-Rust; Henry S. Rzepa; Christoph Steinbeck; Jörg K. Wegner; Egon Willighagen
The Blue Obelisk Movement (http://www.blueobelisk.org/) is the name used by a diverse Internet group promoting reusable chemistry via open source software development, consistent and complimentary chemoinformatics research, open data, and open standards. We outline recent examples of cooperation in the Blue Obelisk group: a shared dictionary of algorithms and implementations in chemoinformatics algorithms drawing from our various software projects; a shared repository of chemoinformatics data including elemental properties, atomic radii, isotopes, atom typing rules, and so forth; and Web services for the platform-independent use of chemoinformatics programs.
Journal of Cheminformatics | 2011
Matthias Samwald; Anja Jentzsch; Christopher Bouton; Claus Stie Kallesøe; Egon Willighagen; Janos Hajagos; M. Scott Marshall; Eric Prud'hommeaux; Oktie Hassanzadeh; Elgar Pichler; Susie Stephens
There is an abundance of information about drugs available on the Web. Data sources range from medicinal chemistry results, over the impact of drugs on gene expression, to the outcomes of drugs in clinical trials. These data are typically not connected together, which reduces the ease with which insights can be gained. Linking Open Drug Data (LODD) is a task force within the World Wide Web Consortiums (W3C) Health Care and Life Sciences Interest Group (HCLS IG). LODD has surveyed publicly available data about drugs, created Linked Data representations of the data sets, and identified interesting scientific and business questions that can be answered once the data sets are connected. The task force provides recommendations for the best practices of exposing data in a Linked Data representation. In this paper, we present past and ongoing work of LODD and discuss the growing importance of Linked Data as a foundation for pharmaceutical R&D data sharing.
Nucleic Acids Research | 2016
Martina Kutmon; Anders Riutta; Nuno Nunes; Kristina Hanspers; Egon Willighagen; Anwesha Bohler; Jonathan Mélius; Andra Waagmeester; Sravanthi R. Sinha; Ryan Miller; Susan L. Coort; Elisa Cirillo; Bart Smeets; Chris T. Evelo; Alexander R. Pico
WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access.
Journal of Cheminformatics | 2011
David M Jessop; Sam Adams; Egon Willighagen; Lezan Hawizy; Peter Murray-Rust
The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.
BMC Bioinformatics | 2007
Ola Spjuth; Tobias Helmus; Egon Willighagen; Stefan Kuhn; Martin Eklund; Johannes Wagener; Peter Murray-Rust; Christoph Steinbeck; Jarl E. S. Wikberg
BackgroundThere is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework.ResultsBioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction.ConclusionBioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL), an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at http://www.bioclipse.net.
Molecules | 2000
Stefan Krause; Egon Willighagen; Christoph Steinbeck
The open source program for drawing 2D chemical structures JChemPaint, its current features, its envisioned further development and the principles enabling researchers and students at places all over the world to collaboratively develop such a program are described.
PLOS ONE | 2011
Janna Hastings; Leonid L. Chepelev; Egon Willighagen; Nico Adams; Christoph Steinbeck; Michel Dumontier
Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA).
Bioinformatics | 2011
Miguel Rojas-Chertó; Piotr T. Kasper; Egon Willighagen; Rob J. Vreeken; Thomas Hankemeier; Theo H. Reijmers
MOTIVATION Identification of metabolites is essential for its use as biomarkers, for research in systems biology and for drug discovery. The first step before a structure can be elucidated is to determine its elemental composition. High-resolution mass spectrometry, which provides the exact mass, together with common constraint rules, for rejecting false proposed elemental compositions, cannot always provide one unique elemental composition solution. RESULTS The Multistage Elemental Formula (MEF) tool is presented in this article to enable the correct assignment of elemental composition to compounds, their fragment ions and neutral losses that originate from the molecular ion by using multistage mass spectrometry (MS(n)). The method provided by MEF reduces the list of predicted elemental compositions for each ion by analyzing the elemental compositions of its parent (precursor ion) and descendants (fragments). MS(n) data of several metabolites were processed using the MEF tool to assign the correct elemental composition and validate the efficacy of the method. Especially, the link between the mass accuracy needed to generate one unique elemental composition and the topology of the MS(n) tree (the width and the depth of the tree) was addressed. This method makes an important step toward semi-automatic de novo identification of metabolites using MS(n) data. AVAILABILITY Software available at: http://abs.lacdr.gorlaeus.net/people/rojas-cherto CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.