Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ehm A. Andersson is active.

Publication


Featured researches published by Ehm A. Andersson.


Diabetes | 2007

Studies of association of variants near the HHEX, CDKN2A/B and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects – validation and extension of genome-wide association studies

Niels Grarup; Chrisian S. Rose; Ehm A. Andersson; Gitte Andersen; Arne L. Nielsen; Anders Albrechtsen; Jesper O. Clausen; Signe S. Rasmussen; Torben Jørgensen; Annelli Sandbæk; Torsten Lauritzen; Ole Schmitz; Torben Hansen; Oluf Pedersen

OBJECTIVE— In the present study, we aimed to validate the type 2 diabetes susceptibility alleles identified in six recent genome-wide association studies in the HHEX/KIF11/IDE (rs1111875), CDKN2A/B (rs10811661), and IGF2BP2 (rs4402960) loci, as well as the intergenic rs9300039 variant. Furthermore, we aimed to characterize quantitative metabolic risk phenotypes of the four variants. RESEARCH DESIGN AND METHODS— The variants were genotyped in the population-based Inter99 cohort (n = 5,970), the ADDITION Study (n = 1,626), a population-based sample of young healthy subjects (n = 377), and in additional type 2 diabetic case (n = 2,111) and glucose-tolerant (n = 521) subjects. The case-control studies involved a total of 4,089 type 2 diabetic patients and 5,043 glucose-tolerant control subjects. RESULTS— We validated association of variants near HHEX/KIF11/IDE, CDKN2A/B, and IGF2BP2 with type 2 diabetes. Interestingly, in middle-aged people, the rs1111875 C-allele of HHEX/KIF11/IDE strongly associated with lower acute insulin response during an oral glucose tolerance test (P = 6 × 10−7). In addition, decreased insulin release following intravenous tolbutamide injection was observed in young healthy subjects (P = 0.02). Also, a reduced insulin release was observed for the CDKN2A/B rs10811661 T-allele after both oral and intravenous glucose challenges (P = 0.001 and P = 0.009, respectively). CONCLUSIONS— We validate that variants in the proximity of the HHEX/KIF11/IDE, CDKN2A/B, and IFG2BP2 loci associate with type 2 diabetes. Importantly, variations within the HHEX/KIF11/IDE and CDKN2A/B loci confer impaired glucose- and tolbutamide-induced insulin release in middle-aged and young healthy subjects, suggesting a role for these variants in the pathogenesis of pancreatic β-cell dysfunction.


Diabetes | 2009

G-allele of Intronic rs10830963 in MTNR1B Confers Increased Risk of Impaired Fasting Glycemia and Type 2 Diabetes Through an Impaired Glucose-Stimulated Insulin Release Studies Involving 19,605 Europeans

Thomas Sparsø; Amélie Bonnefond; Ehm A. Andersson; Nabila Bouatia-Naji; Johan Holmkvist; Lise Wegner; Niels Grarup; Anette P. Gjesing; Karina Banasik; Christine Cavalcanti-Proença; Marion Marchand; Martine Vaxillaire; Guillaume Charpentier; Marjo-Riitta Järvelin; Jean Tichet; Beverley Balkau; Michel Marre; Claire Levy-Marchal; Kristine Færch; Knut Borch-Johnsen; Torben Jørgensen; Sten Madsbad; Pernille Poulsen; Allan Vaag; Christian Dina; Torben Hansen; Oluf Pedersen; Philippe Froguel

OBJECTIVE Genome-wide association studies have identified several variants within the MTNR1B locus that are associated with fasting plasma glucose (FPG) and type 2 diabetes. We refined the association signal by direct genotyping and examined for associations of the variant displaying the most independent effect on FPG with isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), type 2 diabetes, and measures of insulin release and peripheral and hepatic insulin sensitivity. RESEARCH DESIGN AND METHODS We examined European-descent participants in the Inter99 study (n = 5,553), in a sample of young healthy Danes (n = 372), in Danish twins (n = 77 elderly and n = 97 young), in additional Danish type 2 diabetic patients (n = 1,626) and control subjects (n = 505), in the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study (n = 4,656), in the North Finland Birth Cohort 86 (n = 5,258), and in the Haguenau study (n = 1,461). RESULTS The MTNR1B intronic variant, rs10830963, carried most of the effect on FPG and showed the strongest association with FPG (combined P = 5.3 × 10−31) and type 2 diabetes. The rs10830963 G-allele increased the risk of i-IFG (odds ratio [OR] 1.64, P = 5.5 × 10−11) but not i-IGT. The G-allele was associated with a decreased insulin release after oral and intravenous glucose challenges (P < 0.01) but not after injection of tolbutamide. In elderly twins, the G-allele associated with hepatic insulin resistance (P = 0.017). CONCLUSIONS The G-allele of MTNR1B rs10830963 increases risk of type 2 diabetes through a state of i-IFG and not through i-IGT. The same allele associates with estimates of β-cell dysfunction and hepatic insulin resistance.


BMC Medical Genetics | 2010

Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY)

Trine Welløv Boesgaard; Stepanka Pruhova; Ehm A. Andersson; Ondrej Cinek; Barbora Obermannova; Jeannet Lauenborg; Peter Damm; Regine Bergholdt; Flemming Pociot; Charlotta Pisinger; Fabrizio Barbetti; Jan Lebl; Oluf Pedersen; Torben Hansen

BackgroundInsulin gene (INS) mutations have recently been described as a common cause of permanent neonatal diabetes (PNDM) and a rare cause of diabetes diagnosed in childhood or adulthood.MethodsINS was sequenced in 116 maturity-onset diabetes of the young (MODYX) patients (n = 48 Danish and n = 68 Czech), 83 patients with gestational diabetes mellitus (GDM), 34 type 1 diabetic patients screened negative for glutamic acid decarboxylase (GAD), and 96 glucose tolerant individuals. The control group was randomly selected from the population-based sampled Inter99 study.ResultsOne novel heterozygous mutation c.17G>A, R6H, was identified in the pre-proinsulin gene (INS) in a Danish MODYX family. The proband was diagnosed at 20 years of age with mild diabetes and treated with diet and oral hypoglycaemic agent. Two other family members who carried the INS R6H were diagnosed with diabetes when 51 years old and with GDM when 27 years old, respectively. A fourth mutation carrier had normal glucose tolerance when 20 years old. Two carriers of INS R6H were also examined twice with an oral glucose tolerance test (OGTT) with 5 years interval. They both had a ~30% reduction in beta-cell function measured as insulinogenic index. In a Czech MODYX family a previously described R46Q mutation was found. The proband was diagnosed at 13 years of age and had been treated with insulin since onset of diabetes. Her mother and grandmother were diagnosed at 14 and 35 years of age, respectively, and were treated with oral hypoglycaemic agents and/or insulin.ConclusionMutations in INS can be a rare cause of MODY and we conclude that screening for mutations in INS should be recommended in MODYX patients.


Diabetes | 2008

Association of Variants in the Sterol Regulatory Element-Binding Factor 1 (SREBF1) Gene With Type 2 Diabetes, Glycemia, and Insulin Resistance: A Study of 15,734 Danish Subjects

Niels Grarup; Kirstine L. Stender-Petersen; Ehm A. Andersson; Torben Jørgensen; Knut Borch-Johnsen; Annelli Sandbæk; Torsten Lauritzen; Ole Schmitz; Torben Hansen; Oluf Pedersen

OBJECTIVE—We evaluated the association of variants in the sterol regulatory element-binding factor 1 gene (SREBF1) with type 2 diabetes. Due to the previous inconclusive quantitative trait associations, we also did studies of intermediate quantitative phenotypes. RESEARCH DESIGN AND METHODS—We genotyped four variants in SREBF1 in the population-based Inter99 cohort (n = 6,070), the Danish ADDITION study (n = 8,662), and in additional type 2 diabetic patients (n = 1,002). The case-control studies involved 2,980 type 2 diabetic patients and 4,522 glucose-tolerant subjects. RESULTS—The minor alleles of rs2297508, rs11868035, and rs1889018 (linkage disequilibrium R2 = 0.6–0.8) associated with a modestly increased risk of type 2 diabetes (rs2297508: OR 1.17 [95% CI 1.05–1.30], P = 0.003), which was confirmed in meta-analyses of all published studies (rs2297508 G-allele: 1.08 [1.03–1.14] per allele, P = 0.001). The diabetes-associated alleles also associated strongly with a higher plasma glucose at 30 and 120 min and serum insulin at 120 min during an oral glucose tolerance test (all P < 0.006) and the minor allele of rs1889018 with a surrogate measure of insulin sensitivity (P = 0.03). Furthermore, the diabetes-associated alleles associated with a modestly increased A1C level in the population-based Inter99 of middle-aged subjects and in the ADDITION study of high-risk individuals (P = 0.006 and P = 0.008, respectively). CONCLUSIONS—We associate sequence variation in SREBF1 with a modestly increased predisposition to type 2 diabetes. In the general population, the diabetes-associated alleles are discreetly associated with hyperglycemia presumably due to decreased insulin sensitivity. Because sterol regulatory element–binding protein-1c is a mediator of insulin action, the findings are consistent with the presence of a yet undefined subtle loss-of-function SREBF1 variant.


The Journal of Clinical Endocrinology and Metabolism | 2013

Type 2 Diabetes Risk Alleles Near BCAR1 and in ANK1 Associate With Decreased β-Cell Function Whereas Risk Alleles Near ANKRD55 and GRB14 Associate With Decreased Insulin Sensitivity in the Danish Inter99 Cohort

Marie Neergaard Harder; Rasmus Ribel-Madsen; Johanne Marie Justesen; Thomas Sparsø; Ehm A. Andersson; Niels Grarup; Torben Jørgensen; Allan Linneberg; Torben Hansen; Oluf Pedersen

CONTEXT Recently, 10 novel type 2 diabetes (T2D) susceptibility single nucleotide polymorphisms (SNPs) in ZMIZ1, ANK1, KLHDC5, TLE1, ANKRD55, CILP2, MC4R, BCAR1, HMG20A, and GRB14 loci were discovered in MetaboChip-genotyped populations of European ancestry. OBJECTIVE The aim of the present study was to characterize prediabetic quantitative traits underlying these SNP associations and to calculate the amount of interindividual variation in glycemic traits explained by these and previous T2D susceptibility variants. DESIGN AND PARTICIPANTS A total of 5739 Danish individuals naive to glucose-lowering medication were included in quantitative trait studies, and case-control analyses were performed in 1892 patients with T2D and 6603 normoglycemic control subjects. Participants without known T2D underwent an oral glucose tolerance test, and measures of insulin release and sensitivity were estimated from insulinogenic, disposition, BIGTT, and Matsuda indexes. RESULTS We confirmed associations of ZMIZ1, KLHDC5, CILP2, HMG20A, ANK1, ANKRD55, and BCAR1 with T2D. The risk T allele of BCAR1 rs7202877 associated with decreased disposition index (P = .02). The C allele of ANK1 rs516946 associated with decreased insulinogenic (P = .005) and disposition (P = .002) indexes. The G allele of ANKRD55 rs459193 associated with decreased Matsuda index (P = .02) adjusted for waist circumference. The C allele of GRB14 rs13389219 associated with both increased insulinogenic (P = .04) and decreased Matsuda (P = .05) indexes. All validated European T2D variants still only explained a few percentage points of glycemic trait variation. CONCLUSIONS BCAR1 rs7202877 may mediate its diabetogenic impact through impaired β-cell function, but this finding needs to be replicated in independent studies. In addition, we substantiated previous evidence that ANK1 rs516946 confers impaired insulin release and that ANKRD55 rs459193 and GRB14 rs13389219 associate with insulin resistance.


Diabetes | 2013

Genetic Risk Score of 46 Type 2 Diabetes Risk Variants Associates With Changes in Plasma Glucose and Estimates of Pancreatic β-Cell Function Over 5 Years of Follow-Up

Ehm A. Andersson; Kristine H. Allin; Camilla H. Sandholt; Anders Borglykke; Cathrine Juel Lau; Rasmus Ribel-Madsen; Thomas Sparsø; Johanne Marie Justesen; Marie Neergaard Harder; Marit E. Jørgensen; Torben Jørgensen; Torben Hansen; Oluf Pedersen

More than 40 genetic risk variants for type 2 diabetes have been validated. We aimed to test whether a genetic risk score associates with the incidence of type 2 diabetes and with 5-year changes in glycemic traits and whether the effects were modulated by changes in BMI and lifestyle. The Inter99 study population was genotyped for 46 variants, and a genetic risk score was constructed. During a median follow-up of 11 years, 327 of 5,850 individuals developed diabetes. Physical examinations and oral glucose tolerance tests were performed at baseline and after 5 years (n = 3,727). The risk of incident type 2 diabetes was increased with a hazard ratio of 1.06 (95% CI 1.03–1.08) per risk allele. While the population in general had improved glucose regulation during the 5-year follow-up period, each additional allele in the genetic risk score was associated with a relative increase in fasting, 30-min, and 120-min plasma glucose values and a relative decrease in measures of β-cell function over the 5-year period, whereas indices of insulin sensitivity were unaffected. The effect of the genetic risk score on 5-year changes in fasting plasma glucose was stronger in individuals who increased their BMI. In conclusion, a genetic risk score based on 46 variants associated strongly with incident type 2 diabetes and 5-year changes in plasma glucose and β-cell function. Individuals who gain weight may be more susceptible to the cumulative impact of type 2 diabetes risk variants on fasting plasma glucose.


Diabetes | 2010

MTNR1B G24E Variant Associates With BMI and Fasting Plasma Glucose in the General Population in Studies of 22,142 Europeans

Ehm A. Andersson; Birgitte Holst; Thomas Sparsø; Niels Grarup; Karina Banasik; Johan Holmkvist; Torben Jørgensen; Knut Borch-Johnsen; Kristoffer L. Egerod; Torsten Lauritzen; Thorkild I. A. Sørensen; Amélie Bonnefond; David Meyre; Philippe Froguel; Thue W. Schwartz; Oluf Pedersen; Torben Hansen

OBJECTIVE Common variants in the melatonin receptor type 1B (MTNR1B) locus have been shown to increase fasting plasma glucose (FPG) and the risk of type 2 diabetes. The aims of this study were to evaluate whether nonsynonymous variants in MTNR1B associate with monogenic forms of hyperglycemia, type 2 diabetes, or related metabolic traits. RESEARCH DESIGN AND METHODS MTNR1B was sequenced in 47 probands with clinical maturity-onset diabetes of the young (MODY), in 51 probands with early-onset familial type 2 diabetes, and in 94 control individuals. Six nonsynonymous variants (G24E, L60R, V124I, R138C, R231H, and K243R) were genotyped in up to 22,142 Europeans. Constitutive and melatonin-induced signaling was characterized for the wild-type melatonin receptor type 1B (MT2) and the 24E, 60R, and 124I MT2 mutants in transfected COS-7 cells. RESULTS No mutations in MTNR1B were MODY specific, and none of the investigated MTNR1B variants associated with type 2 diabetes. The common 24E variant associated with increased prevalence of obesity (odds ratio 1.20 [1.08–1.34]; P = 8.3 × 10−4) and increased BMI (β = 0.5 kg/m2; P = 1.2 × 10−5) and waist circumference (β = 1.2 cm; P = 9 × 10−6) in combined Danish and French study samples. 24E also associated with decreased FPG (β = −0.08 mmol/l; P = 9.2 × 10−4) in the Danish Inter99 population. Slightly decreased constitutive activity was observed for the MT2 24E mutant, while the 124I and 60R mutants displayed considerably decreased or completely disrupted signaling, respectively. CONCLUSIONS Nonsynonymous mutations in MTNR1B are not a common cause of MODY or type 2 diabetes among Danes. MTNR1B 24E associates with increased body mass and decreased FPG. Decreased MT2 signaling does apparently not directly associate with FPG or type 2 diabetes.


PLOS ONE | 2010

Do gene variants influencing adult adiposity affect birth weight? A population-based study of 24 loci in 4,744 Danish individuals.

Ehm A. Andersson; Kasper Pilgaard; Charlotta Pisinger; Marie Neergaard Harder; Niels Grarup; Kristine Færch; Camilla H. Sandholt; Pernille Poulsen; Daniel R. Witte; Torben Jørgensen; Allan Vaag; Oluf Pedersen; Torben Hansen

Background Several obesity risk alleles affecting adult adiposity have been identified by the recent wave of genome wide association studies. We aimed to examine the potential effect of these variants on fetal body composition by investigating the variants in relation to birth weight and ponderal index of the newborn. Methodology/Principal Findings Midwife records from the Danish State Archives provided information on mothers age, parity, as well as birth weight, birth length and prematurity of the newborn in 4,744 individuals of the population-based Inter99 study. Twenty-four risk alleles showing genome-wide associations with adult BMI and/or waist circumference were genotyped. None of the 24 risk variants tested showed an association with birth weight or ponderal index after correction for multiple testing. Birth weight was divided into three categories low (≤10th percentile), normal (10th–90th percentile) and high birth weight (≥90th percentile) to allow for non-linear associations. There was no difference in the number of risk alleles between the groups (p = 0.57). No interactions between each risk allele and birth weight in the prediction of adult BMI were observed. An obesity risk score was created by summing up risk alleles. The risk score did not associate with fetal body composition. Moreover there was no interaction between the risk score and birth weight/ponderal index in the prediction of adult BMI. Conclusion 24 common variants associated with adult adiposity did not affect or interact with birth weight among Danes suggesting that the effects of these variants predominantly arise in the post-natal life.


PLOS ONE | 2011

The Birth Weight Lowering C-Allele of rs900400 Near LEKR1 and CCNL1 Associates with Elevated Insulin Release following an Oral Glucose Challenge

Ehm A. Andersson; Marie Neergaard Harder; Kasper Pilgaard; Charlotta Pisinger; Alena Stančáková; Johanna Kuusisto; Niels Grarup; Kristine Færch; Pernille Poulsen; Daniel R. Witte; Torben Jørgensen; Allan Vaag; Markku Laakso; Oluf Pedersen; Torben Hansen

Background and Aim The first genome-wide association study on birth weight was recently published and the most significant associated birth weight lowering variant was the rs900400 C-allele located near LEKR1 and CCNL1. We aimed to replicate the association with birth weight in the Danish Inter99 study and furthermore to evaluate associations between rs900400 and indices of insulin secretion and insulin sensitivity obtained by oral glucose tolerance tests in adults from the Danish Inter99 study and the Finnish, Metabolic Syndrome in Men (METSIM) sample. Methods For 4,744 of 6,784 Inter99 participants, midwife journals were traced through the Danish State Archives and association of rs900400 with birth weight was examined. Associations between rs900400 and fasting serum insulin, fasting plasma glucose, insulinogenic index, homeostasis model assessment of insulin resistance (HOMA-IR) and disposition index were studied in 5,484 Danish and 6,915 Finnish non-diabetic individuals and combined in meta-analyses. Results The C-allele of rs900400 was associated with a 22.1 g lower birth weight ([−41.3;−3.0], P = 0.024) per allele. Moreover, in combined analyses of the Danish Inter99 study and the Finnish METSIM study we found that the birth weight lowering allele was associated with increased insulin release measured by the insulinogenic index (β = 2.25% [0.59; 3.91], P = 0.008) and with an increased disposition index (β = 1.76% [0.04; 3.49], P = 0.05). Conclusion The birth weight lowering effect of the C-allele of rs900400 located near LEKR1 and CCNL1 was replicated in the Danish population. Furthermore the C-allele was associated with increased insulin response following oral glucose stimulation in a meta-analysis based on Danish and Finnish non-diabetic individuals.


PLOS ONE | 2015

1H-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents.

Cilius Esmann Fonvig; Elizaveta Chabanova; Ehm A. Andersson; Johanne Dam Ohrt; Oluf Pedersen; Torben Hansen; Henrik S. Thomsen; Jens-Christian Holm

Objectives This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children. Methods Fasting plasma glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8–18 years. Results In 287 overweight/obese children, the prevalences of hepatic and muscular steatosis were 31% and 68%, respectively, whereas the prevalences in 40 lean children were 3% and 10%, respectively. A multiple regression analysis adjusted for age, sex, body mass index z-score (BMI SDS), and pubertal development showed that the OR of exhibiting dyslipidemia was 4.2 (95%CI: [1.8; 10.2], p = 0.0009) when hepatic steatosis was present. Comparing the simultaneous presence of hepatic and muscular steatosis with no presence of steatosis, the OR of exhibiting dyslipidemia was 5.8 (95%CI: [2.0; 18.6], p = 0.002). No significant associations between muscle fat and dyslipidemia, impaired fasting glucose, or blood pressure were observed. Liver and muscle fat, adjusted for age, sex, BMI SDS, and pubertal development, associated to BMI SDS and glycosylated hemoglobin, while only liver fat associated to visceral and subcutaneous adipose tissue and intramyocellular lipid associated inversely to high density lipoprotein cholesterol. Conclusion Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased cardiovascular disease risk.

Collaboration


Dive into the Ehm A. Andersson's collaboration.

Top Co-Authors

Avatar

Oluf Pedersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Torben Hansen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Grarup

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Sparsø

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karina Banasik

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge