Ehn-Kyoung Choi
Chungbuk National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ehn-Kyoung Choi.
Neurobiology of Aging | 2013
Dongsun Park; Yun-Hui Yang; Dae Kwon Bae; Sun Hee Lee; Goeun Yang; Jangbeen Kyung; Dajeong Kim; Ehn-Kyoung Choi; Seong Won Lee; Gon Hyung Kim; Jin Tae Hong; Kyung-Chul Choi; Hong Jun Lee; Seung U. Kim; Yun-Bae Kim
Aging is characterized by progressive loss of cognitive and memory functions as well as decrease in physical activities. In the present study, a human neural stem cell line (F3 NSC) over-expressing choline acetyltransferase (F3.ChAT), an enzyme responsible for acetylcholine synthesis, was generated and transplanted in the brain of 18-month-old male ICR mice. Four weeks post-transplantation, neurobehavioral functions, expression of ChAT enzyme, production of acetylcholine and neurotrophic factors, and expression of cholinergic nervous system markers in transplanted animals were investigated. F3.ChAT NSCs markedly improved both the cognitive function and physical activity of aging animals, in parallel with the elevation of brain acetylcholine level. Transplanted F3 and F3.ChAT cells were found to differentiate into neurons and astrocytes, and to produce ChAT proteins. Transplantation of the stem cells increased brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), enhanced expression of Trk B, and restored host microtubule-associated protein 2 and cholinergic nervous system. The results demonstrate that human NSCs over-expressing ChAT improve cognitive function and physical activity of aging mice, not only by producing ACh directly but also by restoring cholinergic neuronal integrity, which might be mediated by neurotrophins BDNF and NGF.
Journal of Neuroscience Research | 2013
Dongsun Park; Goeun Yang; Dae Kwon Bae; Sun Hee Lee; Yun-Hui Yang; Jangbeen Kyung; Dajeong Kim; Ehn-Kyoung Choi; Kyung-Chul Choi; Seung U. Kim; Sung Keun Kang; Jeong Chan Ra; Yun-Bae Kim
Brain ageing leads to atrophy and degeneration of the cholinergic nervous system, resulting in profound neurobehavioral and cognitive dysfunction from decreased acetylcholine biosynthesis and reduced secretion of growth and neurotrophic factors. Human adipose tissue‐derived mesenchymal stem cells (ADMSCs) were intravenously (1 × 106 cells) or intracerebroventricularly (4 × 105 cells) transplanted into the brains of 18‐month‐old mice once or four times at 2‐week intervals. Transplantation of ADMSCs improved both locomotor activity and cognitive function in the aged animals, in parallel with recovery of acetylcholine levels in brain tissues. Transplanted cells differentiated into neurons and, in part, into astrocytes and produced choline acetyltransferase proteins. Transplantation of ADMSCs restored microtubule‐associated protein 2 in brain tissue and enhanced Trk B expression and the concentrations of brain‐derived neurotrophic factor and nerve growth factor. These results indicate that human ADMSCs differentiate into neural cells in the brain microenvironment and can restore physical and cognitive functions of aged mice not only by increasing acetylcholine synthesis but also by restoring neuronal integrity that may be mediated by growth/neurotrophic factors.
Laboratory Animal Research | 2012
Dajeong Kim; Dongsun Park; Jangbeen Kyung; Yun-Hui Yang; Ehn-Kyoung Choi; Yoon-Bok Lee; Hyun-Kyu Kim; Bang Yeon Hwang; Yun-Bae Kim
Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE2. The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE2 pathways.
Laboratory Animal Research | 2011
Ehn-Kyoung Choi; Dongsun Park; Tae Kyun Kim; Sun Hee Lee; Dae-Kwon Bae; Goeun Yang; Yun-Hui Yang; Jangbeen Kyung; Dajeong Kim; Woo Ryoung Lee; Jun-Gyo Suh; Eun-Suk Jeong; Seung U. Kim; Yun-Bae Kim
Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.
Laboratory Animal Research | 2011
Dongsun Park; Tae Kyun Kim; Young Jin Choi; Sun Hee Lee; Dae-Kwon Bae; Goeun Yang; Yun-Hui Yang; Seong Soo Joo; Ehn-Kyoung Choi; Byeongwoo Ahn; Jong-Choon Kim; Kil-Soo Kim; Yun-Bae Kim
Renal toxicity by melamine in combination with cyanuric acid (1:1) was investigated. Male rats were orally administered melamine plus cyanuric acid (5, 50 or 400 mg/kg each) for 3 days. In contrast to a negligible effect by melamine alone (50 mg/kg, a no-observed-adverse-effect-level: NOAEL), co-administration with cyanuric acid markedly increased the concentrations of blood urea nitrogen and creatinine, as well as kidney weight. A high dose (400 mg/kg) of melamine plus cyanuric acid induced more severe kidney toxicity. The increased blood parameters for kidney toxicity and organ weight lasted longer than 4 days. Combined treatment with melamine and cyanuric acid (50-400 mg/kg each) resulted in many gold-brown crystals and toxic lesions in renal tubules, which were not observed in animals treated with melamine alone (50 mg/kg). These results indicate that only a 3-day exposure to melamine in combination with cyanuric acid causes severe renal damage, even at a NOAEL for melamine found in a 13-week toxicity study. Therefore, it is suggested that the tolerable daily intake or regulatory/management levels of melamine need to be re-considered for cases of co-exposure with cyanuric acid.
Laboratory Animal Research | 2013
Ja-Young Jang; Tae-Su Kim; Jingmei Cai; Jihyun Kim; Youngeun Kim; Kyungha Shin; Kwang Sei Kim; Sung Kyeong Park; Sung-Pyo Lee; Ehn-Kyoung Choi; Man Hee Rhee; Yun-Bae Kim
The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.
Laboratory Animal Research | 2012
Jihyun Kim; Jangbeen Kyung; Dajeong Kim; Ehn-Kyoung Choi; Paul Bang; Dongsun Park; Yun-Bae Kim
The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes.
Laboratory Animal Research | 2012
Yun-Hui Yang; Dongsun Park; Goeun Yang; Sun Hee Lee; Dae Kwon Bae; Jangbeen Kyung; Dajeong Kim; Ehn-Kyoung Choi; Jae-Cheol Son; Seock-Yeon Hwang; Yun-Bae Kim
Effects of egg york containing IgY specific for Helicobacter pylori on the bacterial growth and intragastric infection were investigated in comparison with a proton-pump inhibitor pantoprazole. For in vitro anti-bacterial activity test, H. pylori (1×108 CFU/mL) was incubated with a serially diluted IgY for 3 days. As a result, IgY fully inhibited the bacterial growth at 16 mg/mL, which was determined to a minimal inhibitory concentration. In vivo elimination study, male C57BL/6 mice were infected with the bacteria by intragastric inoculation (1×108 CFU/mouse) 3 times at 2-day intervals, and 2 weeks later, orally treated twice a day with 50, 100, 200 or 500 mg/kg IgY for 18 days. After the final administration, biopsy sample of the gastric mucosa was assayed for the bacterial identification via urease, oxidase, catalase, nitrate reduction and H2S tests in addition to microscopic examination for mucosal inflammation. In CLO kit test, 75, 50, 12.5 and 12.5% of the animals revealed positive reaction following treatment with 50, 100, 200 and 500 mg/kg IgY, respectively, resulting in a superior efficacy at 200 mg/kg than 30 mg/kg pantoprazole that displayed 75% elimination. The CLO test results were confirmed by bacterial identification. Microscopic examination revealed that H. pylori infection caused severe gastric mucosal inflammation, which were not observed in the CLO-negative mice following treatment with IgY or pantoprazole. Taken together, IgY inhibited the growth of H. pylori, and improved gastritis and villi injuries by eliminating the bacteria from the stomach. The results indicate that IgY could be a good candidate overcoming tolerance of antibiotics for the treatment of H. pylori-mediated gastric ulcers.
Laboratory Animal Research | 2014
Ja-Young Jang; Tae-Su Kim; Jingmei Cai; Jihyun Kim; Youngeun Kim; Kyungha Shin; Kwang-Sei Kim; Sung-Pyo Lee; Myung-Hwa Kang; Ehn-Kyoung Choi; Man Hee Rhee; Yun-Bae Kim
The inhibitory effects of perilla oil on the platelet aggregation in vitro and thrombosis in vivo were investigated in comparison with aspirin, a well-known blood flow enhancer. Rabbit platelet-rich plasma was incubated with perilla oil and aggregation inducers collagen or thrombin, and the platelet aggregation rate was analyzed. Perilla oil significantly inhibited both the collagen- and thrombin-induced platelet aggregations, in which the thromboxane B2 formation from collagen-activated platelets were reduced in a concentration-dependent manner. Rats were administered once daily by gavage with perilla oil for 1 week, carotid arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Perilla oil delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 0.5 mL/kg. In addition, a high dose (2 mL/kg) of perilla oil greatly prevented the occlusion, comparable to the effect of aspirin (30 mg/kg). The results indicate that perilla oil inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is proposed that perilla oil could be a good candidate without adverse effects for the improvement of blood flow.
Laboratory Animal Research | 2012
Dongsun Park; Jangbeen Kyung; Dajeong Kim; Seock-Yeon Hwang; Ehn-Kyoung Choi; Yun-Bae Kim
The effects of polarized-light therapy (PLT) on high-cholesterol diet (HCD)-induced hypercholesterolemia and atherosclerosis were investigated in comparison with that of lovastatin in rabbits. Hypercholesterolemia was induced by feeding male New Zealand white rabbits with 1% cholesterol in diet for 2 weeks and maintained with 0.5% cholesterol for 6 weeks, followed by normal diet for 2 weeks for recovery. Lovastatin (0.002% in diet) or daily 5-min or 20-min PLT on the outside surface of ears was started 2 weeks after induction of hypercholesterolemia. Hypercholesterolemic rabbits exhibited great increases in serum cholesterol and low-density lipoproteins (LDL) levels, and finally severe atheromatous plaques formation covering 57.5% of the arterial walls. Lovastatin markedly reduced both the cholesterol and LDL, but the reducing effect (47.5%) on atheroma formation was relatively low. By comparison, 5-min PLT preferentially decreased LDL, rather than cholesterol, and thereby potentially reduced the atheroma area to 42.2%. Notably, 20-min PLT was superior to lovastatin in reducing both the cholesterol and LDL levels as well as the atheromatous plaque formation (26.4%). In contrast to the increases in blood alanine transaminase and aspartate transaminase following lovastatin treatment, PLT did not cause hepatotoxicity. In addition, PLT decreased platelets and hematocrit level. The results indicate that PLT attenuates atherosclerosis not only by lowering blood cholesterol and LDL levels, but also by improving blood flow without adverse effects. Therefore, it is suggested that PLT could be a safe alternative therapy for the improvement of hypercholesterolemia and atherosclerosis.