Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eider M. Arenaza-Urquijo is active.

Publication


Featured researches published by Eider M. Arenaza-Urquijo.


Neurobiology of Aging | 2012

Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance

Beatriz Bosch; Eider M. Arenaza-Urquijo; Lorena Rami; Roser Sala-Llonch; Carme Junqué; Cristina Solé-Padullés; Cleofé Peña-Gómez; Nuria Bargalló; José Luis Molinuevo; David Bartrés-Faz

White matter (WM) damage has been reported in Alzheimers Disease (AD) and Mild Cognitive Impairment (MCI) in diffusion tensor imaging (DTI) studies. It is, however, unknown how the investigation of multiple tensor indexes in the same patients, can differentiate them from normal aging or relate to patients cognition. Forty-six individuals (15 healthy, 16 a-MCI and 15 AD) were included. Voxel-based tract based spatial-statistics (TBSS) was used to obtain whole-brain maps of main WM bundles for fractional anisotropy (FA), radial diffusivity (DR), axial diffusivity (DA) and mean diffusivity (MD). FA reductions were evidenced among AD patients with posterior predominance. A-MCI patients displayed reduced mean FA in these critical regions, compared to healthy elders. MD increases were widespread in both groups of patients. Interestingly, a-MCI patients exhibited DR increases in overlapping areas of FA shrinkages in AD, whereas DA increases were only observed in AD. Gray matter atrophy explained most DTI differences, except those regarding MD in both groups as well as DR increases in posterior associative pathways among a-MCI cases. FA values were the only DTI measure significantly related to memory performance among patients. Present findings suggest that most DTI-derived changes in AD and a-MCI are largely secondary to gray matter atrophy. Notably however, specific DR signal increases in posterior parts of the inferior fronto-occipital and longitudinal fasciculi may reflect early WM compromise in preclinical dementia, which is independent of atrophy. Finally, global measures of integrity, particularly orientation coherence (FA) of diffusion, appear to be more closely related to the cognitive profile of our patients than indexes reflecting water movement parallel (DA) and perpendicular (DR) to the primary diffusion direction.


Cortex | 2012

Brain connectivity during resting state and subsequent working memory task predicts behavioural performance

Roser Sala-Llonch; Cleofé Peña-Gómez; Eider M. Arenaza-Urquijo; Dídac Vidal-Piñeiro; Nuria Bargalló; Carme Junqué; David Bartrés-Faz

Brain regions simultaneously activated during any cognitive process are functionally connected, forming large-scale networks. These functional networks can be examined during active conditions [i.e., task-functional magnetic resonance imaging (fMRI)] and also in passive states (resting-fMRI), where the default mode network (DMN) is the most widely investigated system. The role of the DMN remains unclear, although it is known to be responsible for the shift between resting and focused attention processing. There is also some evidence for its malleability in relation to previous experience. Here we investigated brain connectivity patterns in 16 healthy young subjects by using an n-back task with increasing levels of memory load within the fMRI context. Prior to this working memory (WM) task, participants were trained outside fMRI with a shortened test version. Immediately after, they underwent a resting-state fMRI acquisition followed by the full fMRI n-back test. We observed that the degree of intrinsic correlation within DMN and WM networks was maximal during the most demanding n-back condition (3-back). Furthermore, individuals showing a stronger negative correlation between the two networks under both conditions exhibited better behavioural performance. Interestingly, and despite the fact that we considered eight different resting-state fMRI networks previously identified in humans, only the connectivity within the posteromedial parts of the DMN (precuneus) prior to the fMRI n-back task predicted WM execution. Our results using a data-driven probabilistic approach for fMRI analysis provide the first evidence of a direct relationship between behavioural performance and the degree of negative correlation between the DMN and WM networks. They further suggest that in the context of expectancy for an imminent cognitive challenge, higher resting-state activity in the posteromedial parietal cortex may be related to increased attentional preparatory resources.


Cortex | 2010

Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer's disease

Beatriz Bosch; David Bartrés-Faz; Lorena Rami; Eider M. Arenaza-Urquijo; Davinia Fernández-Espejo; Carme Junqué; Cristina Solé-Padullés; Raquel Sánchez-Valle; Nuria Bargalló; Carles Falcon; José Luis Molinuevo

INTRODUCTION Cognitive reserve (CR) reflects the capacity of the brain to endure neuropathology in order to minimize clinical manifestations. Previous studies showed that CR modulates the patterns of brain activity in both healthy and clinical populations. In the present study we sought to determine whether reorganizations of functional brain resources linked to CR could already be observed in amnestic mild cognitive impairment (a-MCI) and mild Alzheimers disease (AD) patients when performing a task corresponding to an unaffected cognitive domain. We further investigated if activity in regions showing task-induced deactivations, usually identified as pertaining to the default-mode network (DMN), was also influenced by CR. METHODS Fifteen healthy elders, 15 a-MCI and 15 AD patients underwent functional magnetic resonance imaging (fMRI) during a speech comprehension task. Differences in the regression of slopes between CR proxies and blood-oxygen-level dependent (BOLD) signals across clinical groups were investigated for activation and deactivation areas. Correlations between significant fMRI results and a language comprehension test were also computed. RESULTS Among a-MCI and AD we observed positive correlations between CR measures and BOLD signals in task-induced activation areas directly processing speech, as well as greater deactivations in regions of the DMN. These relationships were inverted in healthy elders. We found no evidence that these results were mediated by gray matter volumes. Increased activity in left frontal areas and decreased activity in the anterior cingulate were related to better language comprehension in clinical evaluations. CONCLUSIONS The present findings provide evidence that the neurofunctional reorganizations related to CR among a-MCI and AD patients can be seen even when considering a preserved cognitive domain, being independent of gray matter atrophy. Areas showing both task-induced activations and deactivations are modulated by CR in an opposite manner when considering healthy elders versus patients. Brain reorganizations facilitated by CR may reflect behavioral compensatory mechanisms.


NeuroImage | 2013

Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders.

Eider M. Arenaza-Urquijo; Brigitte Landeau; Renaud La Joie; Katell Mevel; Florence Mézenge; Audrey Perrotin; Béatrice Desgranges; David Bartrés-Faz; Francis Eustache; Gaël Chételat

More educated elders are less susceptible to age-related or pathological cognitive changes. We aimed at providing a comprehensive contribution to the neural mechanism underlying this effect thanks to a multimodal approach. Thirty-six healthy elders were selected based on neuropsychological assessments and cerebral amyloid imaging, i.e. as presenting normal cognition and a negative florbetapir-PET scan. All subjects underwent structural MRI, FDG-PET and resting-state functional MRI scans. We assessed the relationships between years of education and i) gray matter volume, ii) gray matter metabolism and iii) functional connectivity in the brain areas showing associations with both volume and metabolism. Higher years of education were related to greater volume in the superior temporal gyrus, insula and anterior cingulate cortex and to greater metabolism in the anterior cingulate cortex. The latter thus showed both volume and metabolism increases with education. Seed connectivity analyses based on this region showed that education was positively related to the functional connectivity between the anterior cingulate cortex and the hippocampus as well as the inferior frontal lobe, posterior cingulate cortex and angular gyrus. Increased connectivity was in turn related with improved cognitive performances. Reinforcement of the connectivity of the anterior cingulate cortex with distant cortical areas of the frontal, temporal and parietal lobes appears as one of the mechanisms underlying education-related reserve in healthy elders.


Brain Topography | 2011

Structural and functional imaging correlates of cognitive and brain reserve hypotheses in healthy and pathological aging.

David Bartrés-Faz; Eider M. Arenaza-Urquijo

In the field of ageing and dementia, brain- or cognitive reserve refers to the capacity of the brain to manage pathology or age-related changes thereby minimizing clinical manifestations. The brain reserve capacity (BRC) hypothesis argues that this capacity derives from an individual’s unique neural profile (e.g., cell count, synaptic connections, brain volume, etc.). Complimentarily, the cognitive reserve (CR) hypothesis emphasizes inter-individual differences in the effective recruitment of neural networks and cognitive processes to compensate for age-related effects or pathology. Despite an abundance of research, there is scarce literature attempting to synthesize the BRC the CR models. In this paper, we will review important aging and dementia studies using structural and functional neuroimaging techniques to investigate and attempt to assimilate both reserve hypotheses. The possibility to conceptualize reserve as reflecting indexes of brain plasticity will be proposed and novel data suggesting an intimate and complex correspondence between active and passive components of reserve will be presented.


Neurobiology of Aging | 2014

Changes in whole-brain functional networks and memory performance in aging

Roser Sala-Llonch; Carme Junqué; Eider M. Arenaza-Urquijo; Dídac Vidal-Piñeiro; Cinta Valls-Pedret; Eva M. Palacios; Sara Domènech; Antoni Salvà; Nuria Bargalló; David Bartrés-Faz

We used resting-functional magnetic resonance imaging data from 98 healthy older adults to analyze how local and global measures of functional brain connectivity are affected by age, and whether they are related to differences in memory performance. Whole-brain networks were created individually by parcellating the brain into 90 cerebral regions and obtaining pairwise connectivity. First, we studied age-associations in interregional connectivity and their relationship with the length of the connections. Aging was associated with less connectivity in the long-range connections of fronto-parietal and fronto-occipital systems and with higher connectivity of the short-range connections within frontal, parietal, and occipital lobes. We also used the graph theory to measure functional integration and segregation. The pattern of the overall age-related correlations presented positive correlations of average minimum path length (r = 0.380, p = 0.008) and of global clustering coefficients (r = 0.454, p < 0.001), leading to less integrated and more segregated global networks. Main correlations in clustering coefficients were located in the frontal and parietal lobes. Higher clustering coefficients of some areas were related to lower performance in verbal and visual memory functions. In conclusion, we found that older participants showed lower connectivity of long-range connections together with higher functional segregation of these same connections, which appeared to indicate a more local clustering of information processing. Higher local clustering in older participants was negatively related to memory performance.


Frontiers in Aging Neuroscience | 2015

Cognitive reserve and lifestyle: moving towards preclinical Alzheimer's disease.

Eider M. Arenaza-Urquijo; Miranka Wirth; Gaël Chételat

The large majority of neuroimaging studies in Alzheimer’s disease (AD) patients have supported the idea that lifestyle factors may protect against the clinical manifestations of AD rather than influence AD neuropathological processes (the cognitive reserve hypothesis). This evidence argues in favor of the hypothesis that lifestyle factors act as moderators between AD pathology and cognition, i.e., through indirect compensatory mechanisms. In this review, we identify emerging evidence in cognitively normal older adults that relate lifestyle factors to established AD neuroimaging biomarkers. While some of these investigations are in agreement with the compensatory view of cognitive reserve, other studies have revealed new clues on the neural mechanisms underlying beneficial effects of lifestyle factors on the brain. Specifically, they provide novel evidence suggesting direct effects of lifestyle factors on AD neuropathological processes. We propose a tentative theoretical model where lifestyle factors may act via direct neuroprotective and/or indirect compensatory mechanisms. Importantly, we suggest that neuroprotective mechanisms may have a major role during early stages and compensatory mechanisms in later stages of the disease. In the absence of an effective treatment for AD and considering the potential of lifestyle factors in AD prevention, understanding the neural mechanisms underlying lifestyle effects on the brain seems crucial. We hope to provide an integrative view that may help to better understand the complex effects of lifestyle factors on AD neuropathological processes, starting from the preclinical stage.


Frontiers in Aging Neuroscience | 2014

Decreased Default Mode Network connectivity correlates with age-associated structural and cognitive changes.

Dídac Vidal-Piñeiro; Cinta Valls-Pedret; Sara Fernández-Cabello; Eider M. Arenaza-Urquijo; Roser Sala-Llonch; Elisabeth Solana; Nuria Bargalló; Carme Junqué; Emilio Ros; David Bartrés-Faz

Ageing entails cognitive and motor decline as well as brain changes such as loss of gray (GM) and white matter (WM) integrity, neurovascular and functional connectivity alterations. Regarding connectivity, reduced resting-state fMRI connectivity between anterior and posterior nodes of the Default Mode Network (DMN) relates to cognitive function and has been postulated to be a hallmark of ageing. However, the relationship between age-related connectivity changes and other neuroimaging-based measures in ageing is fragmentarily investigated. In a sample of 116 healthy elders we aimed to study the relationship between antero-posterior DMN connectivity and measures of WM integrity, GM integrity and cerebral blood flow (CBF), assessed with an arterial spin labeling sequence. First, we replicated previous findings demonstrating DMN connectivity decreases in ageing and an association between antero-posterior DMN connectivity and memory scores. The results showed that the functional connectivity between posterior midline structures and the medial prefrontal cortex was related to measures of WM and GM integrity but not to CBF. Gray and WM correlates of anterio-posterior DMN connectivity included, but were not limited to, DMN areas and cingulum bundle. These results resembled patterns of age-related vulnerability which was studied by comparing the correlates of antero-posterior DMN with age-effect maps. These age-effect maps were obtained after performing an independent analysis with a second sample including both young and old subjects. We argue that antero-posterior connectivity might be a sensitive measure of brain ageing over the brain. By using a comprehensive approach, the results provide valuable knowledge that may shed further light on DMN connectivity dysfunctions in ageing.


Neurobiology of Aging | 2016

Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood

Pierre Branger; Eider M. Arenaza-Urquijo; Clémence Tomadesso; Florence Mézenge; Claire André; Robin de Flores; Justine Mutlu; Vincent de La Sayette; Francis Eustache; Gaël Chételat; Géraldine Rauchs

Recent studies in mouse models of Alzheimers disease (AD) and in humans suggest that sleep disruption and amyloid-beta (Aβ) accumulation are interrelated, and may, thus, exacerbate each other. We investigated the association between self-reported sleep variables and neuroimaging data in 51 healthy older adults. Participants completed a questionnaire assessing sleep quality and quantity and underwent positron emission tomography scans using [18F]florbetapir and [18F]fluorodeoxyglucose and an magnetic resonance imaging scan to measure Aβ burden, hypometabolism, and atrophy, respectively. Longer sleep latency was associated with greater Aβ burden in prefrontal areas. Moreover, the number of nocturnal awakenings was negatively correlated with gray matter volume in the insular region. In asymptomatic middle-aged and older adults, lower self-reported sleep quality was associated with greater Aβ burden and lower volume in brain areas relevant in aging and AD, but not with glucose metabolism. These results highlight the potential relevance of preserving sleep quality in older adults and suggest that sleep may be a factor to screen for in individuals at risk for AD.


Cerebrovascular Diseases | 2010

Progressive Gray Matter Atrophy in Lacunar Patients with Vascular Mild Cognitive Impairment

Marta Grau-Olivares; Adrià Arboix; Carme Junqué; Eider M. Arenaza-Urquijo; Mariana Rovira; David Bartrés-Faz

Background and Method: We investigated the progression of cognitive and cerebral changes in 30 patients with a first-ever lacunar infarct (LI): 15 with vascular mild cognitive impairment (MCI-V) and 15 without cognitive impairment. All cases were followed up 18 ± 6 months after the stroke and underwent neurological, neuropsychological and MRI assessments at baseline and longitudinally. Results: Differences in the changes in cognitive function over time were observed between the 2 groups, with the MCI-V patients showing slight memory improvements and frontal-lobe-related test impairments from baseline to follow-up evaluations. At baseline, the 2 groups presented similar white matter hyperintensity (WMH) ratings and whole brain gray matter (GM) volumes, and at the follow-up evaluations, both groups had increased WMH lesions and decreased GM volumes; no statistical differences between groups were found. In contrast, a voxel-based morphometry analysis revealed that only MCI-V patients presented clear regional GM volume losses between the first and the second evaluations in cortical (frontal and temporal) and subcortical (pons, cerebellum and caudate) regions. Conclusion: Frontal lobe dysfunction and regional cortical and subcortical GM atrophy best differentiate the clinical course of LI patients with and without cognitive impairment.

Collaboration


Dive into the Eider M. Arenaza-Urquijo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Perrotin

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorena Rami

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge