Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eija H. Seppälä is active.

Publication


Featured researches published by Eija H. Seppälä.


PLOS Genetics | 2011

Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping.

Amaury Vaysse; Abhirami Ratnakumar; Thomas Derrien; Erik Axelsson; Gerli Rosengren Pielberg; Snaevar Sigurdsson; Tove Fall; Eija H. Seppälä; Mark Hansen; Cindy Lawley; Elinor K. Karlsson; Danika L. Bannasch; Carles Vilà; Hannes Lohi; Francis Galibert; Merete Fredholm; Jens Häggström; Åke Hedhammar; Catherine André; Kerstin Lindblad-Toh; Christophe Hitte; Matthew T. Webster

The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.


Nature Genetics | 2010

Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex

Maria Wilbe; Päivi Jokinen; Katarina Truvé; Eija H. Seppälä; Elinor K. Karlsson; Tara Biagi; Angela M. Hughes; Danika L. Bannasch; Göran Andersson; Helene Hansson-Hamlin; Hannes Lohi; Kerstin Lindblad-Toh

The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)–related disease complex that includes both antinuclear antibody (ANA)–positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.


Neurobiology of Disease | 2011

A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers

Fabiana H. G. Farias; Rong Zeng; Gary S. Johnson; Fred A. Wininger; Jeremy F. Taylor; Robert D. Schnabel; Stephanie D. McKay; Douglas N. Sanders; Hannes Lohi; Eija H. Seppälä; Claire M. Wade; Kerstin Lindblad-Toh; Dennis P. O'Brien; Martin L. Katz

A recessive, adult-onset neuronal ceroid-lipofuscinosis (NCL) occurs in Tibetan terriers. A genome-wide association study restricted this NCL locus to a 1.3Mb region of canine chromosome 2 which contains canine ATP13A2. NCL-affected dogs were homozygous for a single-base deletion in ATP13A2, predicted to produce a frameshift and premature termination codon. Homozygous truncating mutations in human ATP13A2 have been shown by others to cause Kufor-Rakeb syndrome (KRS), a rare neurodegenerative disease. These findings suggest that KRS is also an NCL, although analysis of KRS brain tissue will be needed to confirm this prediction. Generalized brain atrophy, behavioral changes, and cognitive decline occur in both people and dogs with ATP13A2 mutations; however, other clinical features differ between the species. For example, Tibetan terriers with NCL develop cerebellar ataxia not reported in KRS patients and KRS patients exhibit parkinsonism and pyramidal dysfunction not observed in affected Tibetan terriers. To see if ATP13A2 mutations could be responsible for some cases of human adult-onset NCL (Kufs disease), we resequenced ATP13A2 from 28 Kufs disease patients. None of these patients had ATP13A2 sequence variants likely to be causal for their disease, suggesting that mutations in this gene are not common causes of Kufs disease.


PLOS Genetics | 2011

LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs

Eija H. Seppälä; Tarja S. Jokinen; Masaki Fukata; Yuko Fukata; Matthew T. Webster; Elinor K. Karlsson; Sami Kilpinen; Frank Steffen; Elisabeth Dietschi; Tosso Leeb; Ranja Eklund; Xiaochu Zhao; Jennifer J. Rilstone; Kerstin Lindblad-Toh; Berge A. Minassian; Hannes Lohi

One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2–10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.


PLOS Genetics | 2012

A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery.

Kaisa Kyöstilä; Sigitas Cizinauskas; Eija H. Seppälä; Esko Suhonen; Janis Jeserevics; Antti Sukura; P. Syrjä; Hannes Lohi

Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (praw = 1.1×10−7, pgenome = 7.5×10−4). Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L), revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER)–associated protein degradation (ERAD) machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD–mediated neurodegenerative disease model, and proposes SEL1L as a new candidate gene in progressive childhood ataxias. Furthermore, our results have enabled the development of a genetic test for breeders.


Animal Genetics | 2011

Regional occurrence, high frequency but low diversity of mitochondrial DNA haplogroup d1 suggests a recent dog-wolf hybridization in Scandinavia

Cornelya Klütsch; Eija H. Seppälä; T. Fall; Mathias Uhlén; Åke Hedhammar; Hannes Lohi; Peter Savolainen

The domestic dog mitochondrial DNA (mtDNA)-gene pool consists of a homogenous mix of haplogroups shared among all populations worldwide, indicating that the dog originated at a single time and place. However, one small haplogroup, subclade d1, found among North Scandinavian/Finnish spitz breeds at frequencies above 30%, has a clearly separate origin. We studied the genetic and geographical diversity for this phylogenetic group to investigate where and when it originated and whether through independent domestication of wolf or dog-wolf crossbreeding. We analysed 582 bp of the mtDNA control region for 514 dogs of breeds earlier shown to harbour d1 and possibly related northern spitz breeds. Subclade d1 occurred almost exclusively among Swedish/Finnish Sami reindeer-herding spitzes and some Swedish/Norwegian hunting spitzes, at a frequency of mostly 60–100%. Genetic diversity was low, with only four haplotypes: a central, most frequent, one surrounded by two haplotypes differing by an indel and one differing by a substitution. The substitution was found in a single lineage, as a heteroplasmic mix with the central haplotype. The data indicate that subclade d1 originated in northern Scandinavia, at most 480–3000 years ago and through dog-wolf crossbreeding rather than a separate domestication event. The high frequency of d1 suggests that the dog-wolf hybrid phenotype had a selective advantage.


PLOS ONE | 2012

Identification of a Novel Idiopathic Epilepsy Locus in Belgian Shepherd Dogs

Eija H. Seppälä; Lotta L. E. Koskinen; Christina Hedal Gulløv; Päivi Jokinen; Luciana Bergamasco; Izabella Baranowska Körberg; Sigitas Cizinauskas; Anita M. Oberbauer; Mette Berendt; Merete Fredholm; Hannes Lohi

Epilepsy is the most common neurological disorder in dogs, with an incidence ranging from 0.5% to up to 20% in particular breeds. Canine epilepsy can be etiologically defined as idiopathic or symptomatic. Epileptic seizures may be classified as focal with or without secondary generalization, or as primary generalized. Nine genes have been identified for symptomatic (storage diseases) and one for idiopathic epilepsy in different breeds. However, the genetic background of common canine epilepsies remains unknown. We have studied the clinical and genetic background of epilepsy in Belgian Shepherds. We collected 159 cases and 148 controls and confirmed the presence of epilepsy through epilepsy questionnaires and clinical examinations. The MRI was normal while interictal EEG revealed abnormalities and variable foci in the clinically examined affected dogs. A genome-wide association study using Affymetrix 50K SNP arrays in 40 cases and 44 controls mapped the epilepsy locus on CFA37, which was replicated in an independent cohort (81 cases and 88 controls; combined p = 9.70×10−10, OR = 3.3). Fine mapping study defined a ∼1 Mb region including 12 genes of which none are known epilepsy genes or encode ion channels. Exonic sequencing was performed for two candidate genes, KLF7 and ADAM23. No variation was found in KLF7 but a highly-associated non-synonymous variant, G1203A (R387H) was present in the ADAM23 gene (p = 3.7×10−8, OR = 3.9 for homozygosity). Homozygosity for a two-SNP haplotype within the ADAM23 gene conferred the highest risk for epilepsy (p = 6.28×10−11, OR = 7.4). ADAM23 interacts with known epilepsy proteins LGI1 and LGI2. However, our data suggests that the ADAM23 variant is a polymorphism and we have initiated a targeted re-sequencing study across the locus to identify the causative mutation. It would establish the affected breed as a novel therapeutic model, help to develop a DNA test for breeding purposes and introduce a novel candidate gene for human idiopathic epilepsies.


Journal of Veterinary Internal Medicine | 2014

Breed Differences in Natriuretic Peptides in Healthy Dogs

K. Sjöstrand; Gerhard Wess; I. Ljungvall; Jens Häggström; Anne-Christine Merveille; Maria Wiberg; Vassiliki Gouni; J. Lundgren Willesen; Sofia Hanås; Anne Sophie Lequarré; L. Mejer Sørensen; Johanna Wolf; Laurent Tiret; Marcin Kierczak; Simon K. G. Forsberg; Kathleen McEntee; G. Battaille; Eija H. Seppälä; Kerstin Lindblad-Toh; Michel Georges; Hannes Lohi; Valérie Chetboul; Merete Fredholm; Katja Höglund

Background Measurement of plasma concentration of natriuretic peptides (NPs) is suggested to be of value in diagnosis of cardiac disease in dogs, but many factors other than cardiac status may influence their concentrations. Dog breed potentially is 1 such factor. Objective To investigate breed variation in plasma concentrations of pro‐atrial natriuretic peptide 31‐67 (proANP 31‐67) and N‐terminal B‐type natriuretic peptide (NT‐proBNP) in healthy dogs. Animals 535 healthy, privately owned dogs of 9 breeds were examined at 5 centers as part of the European Union (EU) LUPA project. Methods Absence of cardiovascular disease or other clinically relevant organ‐related or systemic disease was ensured by thorough clinical investigation. Plasma concentrations of proANP 31‐67 and NT‐proBNP were measured by commercially available ELISA assays. Results Overall significant breed differences were found in proANP 31‐67 (P < .0001) and NT‐proBNP (P < .0001) concentrations. Pair‐wise comparisons between breeds differed in approximately 50% of comparisons for proANP 31‐67 as well as NT‐proBNP concentrations, both when including all centers and within each center. Interquartile range was large for many breeds, especially for NT‐proBNP. Among included breeds, Labrador Retrievers and Newfoundlands had highest median NT‐proBNP concentrations with concentrations 3 times as high as those of Dachshunds. German Shepherds and Cavalier King Charles Spaniels had the highest median proANP 31‐67 concentrations, twice the median concentration in Doberman Pinschers. Conclusions and Clinical Importance Considerable interbreed variation in plasma NP concentrations was found in healthy dogs. Intrabreed variation was large in several breeds, especially for NT‐proBNP. Additional studies are needed to establish breed‐specific reference ranges.


PLOS Genetics | 2015

A Missense Change in the ATG4D Gene Links Aberrant Autophagy to a Neurodegenerative Vacuolar Storage Disease

Kaisa Kyöstilä; P. Syrjä; Vidhya Jagannathan; Gayathri Chandrasekar; Tarja S. Jokinen; Eija H. Seppälä; Doreen Becker; Michaela Drögemüller; Elisabeth Dietschi; Cord Drögemüller; Johann Lang; Frank Steffen; Cecilia Rohdin; Karin Hultin Jäderlund; Anu K. Lappalainen; Kerstin Hahn; Peter Wohlsein; Wolfgang Baumgärtner; Diana Henke; Anna Oevermann; Juha Kere; Hannes Lohi; Tosso Leeb

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.


Animal Genetics | 2011

Assessment of the functionality of genome-wide canine SNP arrays and implications for canine disease association studies

Xiayi Ke; L. J. Kennedy; Andrea D. Short; Eija H. Seppälä; A. Barnes; Dylan Clements; Shona H. Wood; S. D. Carter; G. M. Happ; Hannes Lohi; W. E. R. Ollier

Domestic dogs share a wide range of important disease conditions with humans, including cancers, diabetes and epilepsy. Many of these conditions have similar or identical underlying pathologies to their human counterparts and thus dogs represent physiologically relevant natural models of human disorders. Comparative genomic approaches whereby disease genes can be identified in dog diseases and then mapped onto the human genome are now recognized as a valid method and are increasing in popularity. The majority of dog breeds have been created over the past few hundred years and, as a consequence, the dog genome is characterized by extensive linkage disequilibrium (LD), extending usually from hundreds of kilobases to several megabases within a breed, rather than tens of kilobases observed in the human genome. Genome-wide canine SNP arrays have been developed, and increasing success of using these arrays to map disease loci in dogs is emerging. No equivalent of the human HapMap currently exists for different canine breeds, and the LD structure for such breeds is far less understood than for humans. This study is a dedicated large-scale assessment of the functionalities (LD and SNP tagging performance) of canine genome-wide SNP arrays in multiple domestic dog breeds. We have used genotype data from 18 breeds as well as wolves and coyotes genotyped by the Illumina 22K canine SNP array and Affymetrix 50K canine SNP array. As expected, high tagging performance was observed with most of the breeds using both Illumina and Affymetrix arrays when multi-marker tagging was applied. In contrast, however, large differences in population structure, LD coverage and pairwise tagging performance were found between breeds, suggesting that study designs should be carefully assessed for individual breeds before undertaking genome-wide association studies (GWAS).

Collaboration


Dive into the Eija H. Seppälä's collaboration.

Top Co-Authors

Avatar

Hannes Lohi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Häggström

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassiliki Gouni

École nationale vétérinaire d'Alfort

View shared research outputs
Top Co-Authors

Avatar

I. Ljungvall

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Katja Höglund

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Sofia Hanås

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge