Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eija K. Laakkonen is active.

Publication


Featured researches published by Eija K. Laakkonen.


Menopause | 2012

Hormone therapy is associated with better body composition and adipokine/glucose profiles: a study with monozygotic co-twin control design.

Maarit Ahtiainen; Markku Alen; Eija K. Laakkonen; Suvi Pulkkinen; Paula H. A. Ronkainen; Urho M. Kujala; Jaakko Kaprio; Sarianna Sipilä; Vuokko Kovanen

Objective The aim of this study was to evaluate the possibility of preventing the metabolic health consequences of postmenopausal hypogonadism with the use of long-term hormone therapy (HT). Methods We used a monozygotic co-twin control design including 10 twin pairs (aged 56-62 y) discordant for HT (duration of HT, 2-10 y). In addition, 14 premenopausal women (aged 29-35 y) who did not use HT were studied to evaluate the differences in metabolic health between the premenopausal and postmenopausal states. Body composition was determined, and waist-to-hip ratio was used as an estimate for fat distribution. Serum sex steroids, sex hormone-binding globulin, and serum lipid and glucose profiles were analyzed. The serum levels of adiponectin, monocyte chemotactic protein-1, and leptin, as well as their local transcript levels in adipose tissue, skeletal muscle, and leukocytes, were measured. Results Long-term HT was associated with a healthier amount and distribution of body fat. No difference was seen in serum lipid concentrations between HT users and their nonusing identical twin sisters, but fasting serum glucose and glycated hemoglobin levels were 5% and 3% lower in HT users than in nonusers, respectively. Among the adipokines analyzed, the most notable finding was a 15% lower level of monocyte chemotactic protein-1 in HT users, particularly with respect to its suggested mediator role between obesity and insulin resistance. Conclusions Long-term HT is associated with healthier amount and distribution of body fat and better adipocytokine profile, with concomitant signs of improved insulin sensitivity.


PLOS ONE | 2016

Adipocytes as a Link Between Gut Microbiota-Derived Flagellin and Hepatocyte Fat Accumulation

Eveliina Munukka; Petri Wiklund; Tiina Partanen; Sakari Välimäki; Eija K. Laakkonen; Maarit Lehti; Pamela Fischer-Posovzsky; Martin Wabitsch; Sulin Cheng; Satu Pekkala

While the role of both elevated levels of circulating bacterial cell wall components and adipose tissue in hepatic fat accumulation has been recognized, it has not been considered that the bacterial components-recognizing adipose tissue receptors contribute to the hepatic fat content. In this study we found that the expression of adipose tissue bacterial flagellin (FLG)-recognizing Toll-like receptor (TLR) 5 associated with liver fat content (r = 0.699, p = 0.003) and insulin sensitivity (r = -0.529, p = 0.016) in humans (n = 23). No such associations were found for lipopolysaccharides (LPS)-recognizing TLR4. To study the underlying molecular mechanisms of these associations, human HepG2 hepatoma cells were exposed in vitro to the conditioned culture media derived from FLG or LPS-challenged human adipocytes. The adipocyte-mediated effects were also compared to the effects of direct HepG2 exposure to FLG and LPS. We found that the media derived from FLG-treated adipocytes stimulated fat accumulation in HepG2 cells, whereas either media derived from LPS-treated adipocytes or direct FLG or LPS exposure did not. This is likely due to that FLG-treatment of adipocytes increased lipolysis and secretion of glycerol, which is known to serve a substrate for triglyceride synthesis in hepatocytes. Similarly, only FLG-media significantly decreased insulin signaling-related Akt phosphorylation, IRS1 expression and mitochondrial respiratory chain ATP5A. In conclusion, our results suggest that the FLG-induced TLR5 activation in adipocytes increases glycerol secretion from adipocytes and decreases insulin signaling and mitochondrial functions, and increases fat accumulation in hepatocytes. These mechanisms could, at least partly, explain the adipose tissue TLR5 expression associated with liver fat content in humans.


European Journal of Sport Science | 2016

Effects of resistance training on expression of IGF-I splice variants in younger and older men

Juha P. Ahtiainen; Juha J. Hulmi; Maarit Lehti; William J. Kraemer; Kai Nyman; Harri Selänne; Markku Alen; Jyrki Komulainen; Vuokko Kovanen; Antti Mero; Anastassios Philippou; Eija K. Laakkonen; Keijo Häkkinen

Abstract Insulin-like growth factor-I (IGF-I) and its splice variants Insulin-like growth factor-I isoform Ea (IGF-IEa) and mechano growth factor (MGF) may play an important role in muscular adaptations to resistance training (RT) that may be modulated by ageing. It has been suggested that IGF-I induces cellular responses via AKT8 virus oncogene cellular homolog (Akt) and Extracellular signal-regulated kinase (Erk) signalling pathways. Therefore, resistance exercise-induced changes in skeletal muscle IGF-IEa and MGF messenger ribonucleic acid (mRNA), and MGF, Erk1/2, Akt and p70S6K protein expression were investigated before and after 21 weeks of RT in younger (YM, 20–34 yrs., n = 7) and older men (OM, 51–71 yrs., n = 10). Experimental resistance exercises (RE) of 5 × 10 repetition maximum leg presses were performed pre- and post-RT. Muscle biopsies were obtained before and 48 h after REs, to study the late response to muscle loading. The muscle proteins or mRNAs of interest were not systematically influenced by the REs or RT, except for MGF mRNA expression which was increased (p < .01) following RE before RT in OM. No differences were observed between YM and OM in any variables. This study demonstrated that basal levels or RE-induced responses in skeletal muscle MGF, Erk1/2, Akt and p70S6K protein levels or IGF-IEa and MGF mRNA expression did not differ between YM and OM, nor change systematically due to RT. Thus, ageing appears not to effect expression of the present signalling molecules involved in skeletal muscle hypertrophy.


Scientific Reports | 2017

Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy

Reeta Kangas; Timo Törmäkangas; Vidal Fey; Juha Pursiheimo; Ilkka Miinalainen; Markku Alen; Jaakko Kaprio; Sarianna Sipilä; Anna-Marja Säämänen; Vuokko Kovanen; Eija K. Laakkonen

Exosomes participate in intercellular messaging by transporting bioactive lipid-, protein- and RNA-molecules and -complexes. The contents of the exosomes reflect the physiological status of an individual making exosomes promising targets for biomarker analyses. In the present study we extracted exosome microRNAs (exomiRs) from serum samples of premenopausal women (n = 8) and monozygotic postmenopausal twins (n = 10 female pairs), discordant for the use of estrogenic hormone replacement therapy (HRT), in order to see whether the age or/and the use of HRT associates with exomiR content. A total of 241 exomiRs were detected by next generation sequencing, 10 showing age, 14 HRT and 10 age +HRT -related differences. When comparing the groups, differentially expressed miRs were predicted to affect cell proliferation processes showing inactivation with younger age and HRT usage. MiR-106-5p, -148a-3p, -27-3p, -126-5p, -28-3p and -30a-5p were significantly associated with serum 17β-estradiol. MiRs formed two hierarchical clusters being indicative of positive or negative health outcomes involving associations with body composition, serum 17β-estradiol, fat-, glucose- and inflammatory markers. Circulating exomiR clusters, obtained by NGS, could be used as indicators of metabolic and inflammatory status affected by hormonal changes at menopause. Furthermore, the individual effects of HRT-usage could be evaluated based on the serum exomiR signature.


Aging Cell | 2017

Estrogenic regulation of skeletal muscle proteome : a study of premenopausal women and postmenopausal MZ cotwins discordant for hormonal therapy

Eija K. Laakkonen; Rabah Soliymani; Sira Karvinen; Jaakko Kaprio; Urho M. Kujala; Marc Baumann; Sarianna Sipilä; Vuokko Kovanen; Maciej Lalowski

Female middle age is characterized by a decline in skeletal muscle mass and performance, predisposing women to sarcopenia, functional limitations, and metabolic dysfunction as they age. Menopausal loss of ovarian function leading to low circulating level of 17β‐estradiol has been suggested as a contributing factor to aging‐related muscle deterioration. However, the underlying molecular mechanisms remain largely unknown and thus far androgens have been considered as a major anabolic hormone for skeletal muscle. We utilized muscle samples from 24 pre‐ and postmenopausal women to establish proteome‐wide profiles, associated with the difference in age (30–34 years old vs. 54–62 years old), menopausal status (premenopausal vs. postmenopausal), and use of hormone replacement therapy (HRT; user vs. nonuser). None of the premenopausal women used hormonal medication while the postmenopausal women were monozygotic (MZ) cotwin pairs of whom the other sister was current HRT user or the other had never used HRT. Label‐free proteomic analyses resulted in the quantification of 797 muscle proteins of which 145 proteins were for the first time associated with female aging using proteomics. Furthermore, we identified 17β‐estradiol as a potential upstream regulator of the observed differences in muscle energy pathways. These findings pinpoint the underlying molecular mechanisms of the metabolic dysfunction accruing upon menopause, thus having implications for understanding the complex functional interactions between female reproductive hormones and health.


Oncotarget | 2018

Menopause and adipose tissue: miR-19a-3p is sensitive to hormonal replacement

Reeta Kangas; Cristina Morsiani; Grazia Pizza; Catia Lanzarini; Pauliina Aukee; Jaakko Kaprio; Sarianna Sipilä; Claudio Franceschi; Vuokko Kovanen; Eija K. Laakkonen; Miriam Capri

Tissue-specific effects of 17β-estradiol are delivered via both estrogen receptors and microRNAs (miRs). Menopause is known to affect the whole-body fat distribution in women. This investigation aimed at identifying menopause- and hormone replacement therapy (HRT)-associated miR profiles and miR targets in subcutaneous abdominal adipose tissue and serum from the same women. A discovery phase using array technology was performed in 13 women, including monozygotic twin pairs discordant for HRT and premenopausal young controls. Seven miRs, expressed in both adipose tissue and serum, were selected for validation phase in 34 women from a different cohort. An age/menopause-related increase of miRs-16-5p, -451a, -223-3p, -18a-5p, -19a-3p,-486-5p and -363-3p was found in the adipose tissue, but not in serum. MiR-19a-3p, involved in adipocyte development and estrogen signaling, resulted to be higher in HRT users in comparison with non-users. Among the identified targets, AKT1, BCL-2 and BRAF proteins showed lower expression in both HRT and No HRT users in comparison with premenopausal women. Unexpectedly, ESR1 protein expression was not modified although its mRNA was lower in No HRT users compared to premenopausal women and HRT users. Thus, both HRT and menopause appear to affect adipose tissue homeostasis via miR-mediated mechanism.


Twin Research and Human Genetics | 2017

Leukocyte and Skeletal Muscle Telomere Length and Body Composition in Monozygotic Twin Pairs Discordant for Long-term Hormone Replacement Therapy

Elina Sillanpää; Paula Niskala; Eija K. Laakkonen; Elodie Ponsot; Markku Alen; Jaakko Kaprio; Fawzi Kadi; Vuokko Kovanen; Sarianna Sipilä

Estrogen-based hormone replacement therapy (HRT) may be associated with deceleration of cellular aging. We investigated whether long-term HRT has effects on leukocyte (LTL) or mean and minimum skeletal muscle telomere length (SMTL) in a design that controls for genotype and childhood environment. Associations between telomeres, body composition, and physical performance were also examined. Eleven monozygotic twin pairs (age 57.6 ± 1.8 years) discordant for HRT were studied. Mean duration of HRT use was 7.3 ± 3.7 years in the user sister, while their co-twins had never used HRT. LTL was measured by qPCR and SMTLs by southern blot. Body and muscle composition were estimated by bioimpedance and computed tomography, respectively. Physical performance was measured by jumping height and grip strength. HRT users and non-users did not differ in LTL or mean or minimum SMTL. Within-pair correlations were high in LTL (r = 0.69, p = .020) and in mean (r = 0.74, p = .014) and minimum SMTL (r = 0.88, p = .001). Body composition and performance were better in users than non-users. In analyses of individuals, LTL was associated with BMI (r 2 = 0.30, p = .030), percentage total body (r 2 = 0.43, p = .014), and thigh (r 2 = 0.55, p = .004) fat, while minimum SMTL was associated with fat-free mass (r 2 = 0.27, p = .020) and thigh muscle area (r 2 = 0.42, p = .016). We found no associations between HRT use and telomere length. Longer LTLs were associated with lower total and regional fat, while longer minimum SMTLs were associated with higher fat-free mass and greater thigh muscle area. This suggests that telomeres measured from different tissues may have different associations with measures of body composition.


PLOS ONE | 2017

Female reproductive factors are associated with objectively measured physical activity in middle-aged women

Eija K. Laakkonen; Janne Kulmala; Pauliina Aukee; Harto Hakonen; Urho M. Kujala; Dawn A. Lowe; Vuokko Kovanen; Tuija Tammelin; Sarianna Sipilä

Physical activity improves health and may delay the onset of several chronic diseases. For women in particular, the rate of these diseases accelerates at middle age; therefore it is important to identify the determinants of health-enhancing physical activity during midlife in this population. In this study, we focused on determinants that are unique to the female sex, such as childbearing and menopause. The main objective was to characterize the level of physical activity and differences between active and inactive middle-aged Finnish women. In addition, we examined the association of physical activity with female reproductive factors at midlife. The study population consisted of 647 women aged 48 to 55 years who participated in our Estrogenic Regulation of Muscle Apoptosis (ERMA) study during the period from 2015 to 2016. Physical activity was measured objectively using hip-worn accelerometers for seven consecutive days. The outcome measures included the amounts of light intensity physical activity and moderate to vigorous intensity physical activity accumulated in bouts of at least 10 minutes (MVPA10). MVPA10 was used to determine whether women were placed in the active (≥150 min/week) or inactive (<150 min/week) group. Multiple linear regression models were performed with physical activity measures as dependent variables and cumulative reproductive history index, menopausal symptoms, and pelvic floor dysfunction as independent variables. We found that a large portion (61%) of Finnish middle-aged women did not meet the physical activity recommendations of 150 minutes of MVPA10 per week. In the studied cohort, 78% of women experienced menopausal symptoms, and 54% exhibited pelvic floor dysfunction. Perceived menopausal symptoms were associated with greater light physical activity. Perceived pelvic floor dysfunction was associated with lower MVPA10. According to the fully adjusted multiple linear regression models, reproductive factors explained 6.0% of the variation of MVPA10 and 7.5% of the variation of light physical activity. The results increase our knowledge of the factors related to physical activity participation among middle-aged women and indicate that menopausal symptoms and pelvic floor dysfunction should be identified and considered when promoting physical activity for women during midlife. The results emphasize that awareness of female reproductive factors, especially menopausal symptoms and pelvic floor dysfunction, is important for physical activity counseling to effectively help women in performing and sustaining health-enhancing amounts of physical activity. Specifically, the condition of the pelvic floor should be taken into account when identifying the proper activity type and intensity level so that health benefits of physical activity can still be attained without worsening symptoms.


BioMed Research International | 2017

Declining Physical Performance Associates with Serum FasL, miR-21, and miR-146a in Aging Sprinters.

Reeta Kangas; Timo Törmäkangas; Ari Heinonen; Markku Alen; Harri Suominen; Vuokko Kovanen; Eija K. Laakkonen; Marko T. Korhonen

Aging is associated with systemic inflammation and cellular apoptosis accelerating physiological dysfunctions. Whether physically active way of life affects these associations is unclear. This study measured the levels of serum inflammatory and apoptotic molecules, their change over 10 years, and their associations with physical performance in sprint-trained male athletes. HsCRP, cell counts, HGB, FasL, miR-21, and miR-146a were measured cross-sectionally (n = 67, 18–90 yrs) and serum FasL, miR-21, and miR-146a and their aging-related associations with physical performance were assessed over a 10-year follow-up (n = 49, 50–90 yrs). The cross-sectional study showed positive age correlations for neutrophils and negative for lymphocytes, red blood cells, HGB, FasL, and miR-146a. During the 10-year follow-up, FasL decreased (P = 0.017) and miR-21 (P < 0.001) and miR-146a (P = 0.005) levels increased. When combining the molecule levels, aging, and physical performance, FasL associated with countermovement jump and bench press (P < 0.001), miR-21 and miR-146a with knee flexion (P = 0.023; P < 0.001), and bench press (P = 0.004; P < 0.001) and miR-146a with sprint performance (P < 0.001). The studied serum molecules changed in an age-dependent manner and were associated with declining physical performance. They have potential as biomarkers of aging-related processes influencing the development of physiological dysfunctions. Further research is needed focusing on the origins and targets of circulating microRNAs to clarify their function in various tissues with aging.


PLOS ONE | 2016

Correction: Adipocytes as a Link Between Gut Microbiota-Derived Flagellin and Hepatocyte Fat Accumulation.

Eveliina Munukka; Petri Wiklund; Tiina Partanen; Sakari Välimäki; Eija K. Laakkonen; Maarit Lehti; Pamela Fischer-Posovszky; Martin Wabitsch; Sulin Cheng; Satu Pekkala

[This corrects the article DOI: 10.1371/journal.pone.0152786.].

Collaboration


Dive into the Eija K. Laakkonen's collaboration.

Top Co-Authors

Avatar

Vuokko Kovanen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urho M. Kujala

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Markku Alen

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar

Reeta Kangas

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harto Hakonen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Katja Kokko

University of Jyväskylä

View shared research outputs
Researchain Logo
Decentralizing Knowledge