Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eiji Iwase is active.

Publication


Featured researches published by Eiji Iwase.


Journal of Micromechanics and Microengineering | 2010

Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

Seiichi Takamatsu; Tomoyuki Takahata; Masato Muraki; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.


IEEE\/ASME Journal of Microelectromechanical Systems | 2005

Multistep sequential batch assembly of three-dimensional ferromagnetic microstructures with elastic hinges

Eiji Iwase; Isao Shimoyama

In this paper, we have developed a process for multistep sequential batch assembly of complex three-dimensional (3-D) ferromagnetic microstructures. The process uses the magnetic torque generated by an external magnetic field perpendicular to the substrate to lift hinged structures. We found that a dimensionless factor that depends on the volume of the magnetic material and the stiffness of the hinges determines the sensitivity of the hinged microstructures to a magnetic field. This factor was used as a criterion in designing a process for sequential batch assembly, i.e., for setting appropriate differences in sensitivity. Using a dimensionless factor in the design of the sequential assembly simplified the assembly process, which requires only placing the structures on a permanent magnet, and which can be used to carry out multistep sequential batch assembly. We fabricated hinged microstructures, which consist of 4.5-/spl mu/m-thick electroplated Permalloy plates and 200-nm-thick nickel elastic hinges of various sizes. In an experiment, four plates (600 /spl mu/m/spl times/800 /spl mu/m) were lifted sequentially and out-of-plane microstructures were assembled in a four-step process. Assembly of more complex out-of-plane microstructures (e.g., regular tetrahedrons, 800 /spl mu/m long on one side) was also shown to be feasible using this method of sequential batch assembly. [1351].


Journal of Micromechanics and Microengineering | 2012

Control of buckling in large micromembranes using engineered support structures

Eiji Iwase; Pui Chuen Hui; David Woolf; Alejandro W. Rodriguez; Steven G. Johnson; Federico Capasso; Marko Loncar

In this paper we describe a general method to avoid stress-induced buckling of thin and large freestanding membranes. We show that using properly designed supports, in the form of microbeams, we can reduce the out-of-plane deflection of the membrane while maintaining its stiffness. As a proof of principle, we used a silicon-on-insulator (SOI) platform to fabricate 30 µm wide, 220 nm thick, free-standing Si membranes, supported by four 15 µm long and 3 µm wide microbeams. Using our approach, we are able to achieve an out-of-plane deformation of the membrane smaller than 50 nm in spite of 39 MPa of compressive internal stress. Our method is general, and can be applied to different material systems with compressive or tensile internal stress.


international conference on robotics and automation | 2010

Stretchable liquid tactile sensor for robot-joints

Kentaro Noda; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

In this paper, we propose a stretchable tactile sensor composed of a pair of silicone rubber channels filled with electro conductive liquid. When a force was applied to this channel, its length and cross-sectional area deforms. By measuring the resistance change of the electro conductive liquid in the channel, its deformation can be measured. The proposed tactile sensor is composed of two parallel channel filled with electro conductive liquid, therefore, by comparing the resistance changes of each channel to the deformation, only the contacting force can be measured independently. Since a liquid is used for the sensing material, the proposed liquid tactile sensor can be easily attached to movable portions as the joints of robots. In the paper, we measured the sensing characteristics of the liquid tactile sensor to the stretch, bend, and contact force. Finally, the efficiency of the sensor was demonstrated by measuring the contact force from 0 to 3.0N by attaching the 20% stretched liquid tactile sensor to curved surfaces with 0.05mm−1 in curvature.


Journal of Micromechanics and Microengineering | 2007

Three-dimensional integration of heterogeneous silicon micro-structures by liftoff and stamping transfer

Hiroaki Onoe; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

We propose a method of integrating heterogeneous silicon microstructures (typical scale of 10–100 µm) into a single silicon substrate to fabricate MEMS structures. It includes adhesion-based liftoff and stamping transfer (LIST) processes using poly-(dimethylsiloxane) (PDMS) sheets. Silicon microstructures fabricated on different wafers are lifted onto the PDMS sheets by breaking the narrow columns supporting the microstructures by applying a vertical load to the PDMS sheet, and then transferred onto the silicon substrate with high yield (more than 90%) and superior positioning accuracy (within 0.3 µm on average in a 2 × 3 mm area). Multiple heterogeneous silicon structures are integrated into a single silicon substrate by repeating this LIST process. We fabricated two-dimensional arrays, three-dimensional pyramidal structures and overhanging bridge microstructures with our method, which proved that the LIST process could be used to integrate heterogeneous MEMS structures into a single wafer.


Optics Express | 2011

Bonding, antibonding and tunable optical forces in asymmetric membranes

Alejandro W. Rodriguez; Alexander P. McCauley; Pui Chuen Hui; David Woolf; Eiji Iwase; Federico Capasso; Marko Loncar; Steven G. Johnson

We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of guided-wave resonances that was first predicted in symmetric systems. Our focus is a geometry consisting of a photonic-crystal (holey) membrane suspended above an unpatterned layered substrate, supporting planar waveguide modes that can couple via the periodic modulation of the holey membrane. Asymmetric geometries have a clear advantage in ease of fabrication and experimental characterization compared to symmetric double-membrane structures. We show that the asymmetry can also lead to unusual behavior in the force magnitudes of a bonding/antibonding pair as the membrane separation changes, including nonmonotonic dependences on the separation. We propose a computational method that obtains the entire force spectrum via a single time-domain simulation, by Fourier-transforming the response to a short pulse and thereby obtaining the frequency-dependent stress tensor. We point out that by operating with two, instead of a single frequency, these evanescent forces can be exploited to tune the spring constant of the membrane without changing its equilibrium separation.


Journal of Micromechanics and Microengineering | 2009

Temperature-controlled transfer and self-wiring for multi-color light-emitting diode arrays

Hiroaki Onoe; Akihito Nakai; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

We propose an integration method for arranging light-emitting diode (LED) bare chips on a flexible substrate for multi-color inorganic LED displays. The LED bare chips (240 µm × 240 µm × 75 µm), which were diced on an adhesive sheet by the manufacturer, were transferred to a flexible polyimide substrate by our temperature-controlled transfer (TCT) and self-wiring (SW) processes. In these processes, low-melting point solder (LMPS) and poly-(ethylene glycol) (PEG) worked as adhesive layers for the LED chips during the TCT processes, and the adhesion force of the LMPS and PEG layers was controlled by changing the temperature to melt and solidify the layers. After the TCT processes, electrical connection between the transferred LED chips and the flexible substrate was automatically established via the SW process, by using the surface tension of the melted LMPS. This TCT/SW method enabled us to (i) handle arrays of commercially available bare chips, (ii) arrange multiple types of chips on the circuit substrate by simply repeating the TCT processes and (iii) establish electrical connection between the chips and the substrate automatically. Applying this transfer printing and wiring method, we experimentally demonstrated a 5-by-5 flexible LED array and a two-color (blue and green) LED array.


Journal of Micromechanics and Microengineering | 2012

Flexible tactile sensor for shear stress measurement using transferred sub-µm-thick Si piezoresistive cantilevers

Kentaro Noda; Hiroaki Onoe; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

We propose a flexible tactile sensor using sub-?m-thick Si piezoresistive cantilevers for shear stress detection. The thin Si piezoresistive cantilevers were fabricated on the device layer of a silicon on insulator (SOI) wafer. By using an adhesion-based transfer method, only these thin and fragile cantilevers were transferred from the rigid handling layer of the SOI wafer to the polydimethylsiloxane layer without damage. Because the thin Si cantilevers have high durability of bending, the proposed sensor can be attached to a thin rod-type structure serving as the finger of a robotic hand. The cantilevers were arrayed in orthogonal directions to measure the X and Y directional components of applied shear stresses independently. We evaluated the bending durability of our flexible tactile sensor and confirmed that the sensor can be attached to a rod with a radius of 10?mm. The sensitivity of the flexible tactile sensor attached to a curved surface was 1.7???10?6?Pa?1?on average for a range of shear stresses from??1.8???103?to 1.8???103?Pa applied along its surface. It independently detected the X and Y directional components of the applied shear stresses.


Optics Express | 2013

Optomechanical and photothermal interactions in suspended photonic crystal membranes

David Woolf; Pui Chuen Hui; Eiji Iwase; Mughees Khan; Alejandro W. Rodriguez; Parag B. Deotare; Irfan Bulu; Steven G. Johnson; Federico Capasso; Marko Loncar

We present here an optomechanical system fabricated with novel stress management techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal membrane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to below 200 nm. Our devices are able to generate strong attractive and repulsive optical forces over a large surface area with simple in- and out- coupling and feature the strongest repulsive optomechanical coupling in any geometry to date (gOM/2π ≈65 GHz/nm). The interplay between the optomechanical and photo-thermal-mechanical dynamics is explored, and the latter is used to achieve cooling and amplification of the mechanical mode, demonstrating that our platform is well-suited for potential applications in low-power mass, force, and refractive-index sensing as well as optomechanical accelerometry.


Applied Physics Letters | 2011

Designing evanescent optical interactions to control the expression of Casimir forces in optomechanical structures

Alejandro W. Rodriguez; David Woolf; Pui Chuen Hui; Eiji Iwase; Alexander P. McCauley; Federico Capasso; Marko Loncar; Steven G. Johnson

We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above enable all-optical control and actuation of stiction effects induced by the Casimir force. In this way, one can control how the Casimir force is expressed in the mechanical dynamics of the membrane, not by changing the Casimir force directly but by optically modifying the geometry and counteracting the mechanical spring constant to bring the system in or out of regimes where Casimir physics dominate. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.

Collaboration


Dive into the Eiji Iwase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Woolf

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge