Eileen Bridge
Miami University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eileen Bridge.
Virology | 2003
Kara Corbin-Lickfett; Eileen Bridge
A complex of the Adenovirus (Ad) early region 1b 55-kDa protein (E1b-55kDa) and the early region 4 ORF6 34-kDa protein (E4-34kDa) promotes viral late RNA accumulation in the cytoplasm while inhibiting the transport of most newly synthesized cellular mRNA. The E4 ORF3 11-kDa protein (E4-11kDa) functionally compensates for at least some of the activities of this complex. We find that the same large central region of E4-34kDa that is required for proteasome-mediated degradation of p53 (J. Virol. 75, (2001) 699-709) is also required to promote viral late gene expression in a complementation assay. E4-34kDa does not promote late gene expression in complementation assays performed in the presence of proteasome inhibitors. A proteasome inhibitor also dramatically reduced late gene expression by a virus that lacks the E4-11kDa gene and therefore relies on E4-34kDa for late gene expression. Our results suggest that E4-34kDa activity in promoting late gene expression depends on the proteasome.
Journal of Virology | 2000
Claudia Rabino; Anders Aspegren; Kara Corbin-Lickfett; Eileen Bridge
ABSTRACT Adenovirus late mRNA export is facilitated by viral early proteins of 55 and 34 kDa. The 34-kDa protein contains a leucine-rich nuclear export signal (NES) similar to that of the human immunodeficiency virus Rev protein. It was proposed that the 34-kDa protein might facilitate the export of adenovirus late mRNA through a Rev-like NES-mediated export pathway. We have tested the role of NES-mediated RNA export during adenovirus infection, and we find that it is not essential for the expression of adenovirus late genes.
Virology | 2008
Shomita S. Mathew; Eileen Bridge
Adenovirus (Ad) infections stimulate the activation of cellular DNA damage response and repair pathways. Ad early regulatory proteins prevent activation of DNA damage responses by targeting the MRN complex, composed of the Mre11, Rad50 and Nbs1 proteins, for relocalization and degradation. In the absence of these viral proteins, Mre11 colocalizes with viral DNA replication foci. Mre11 foci formation at DNA damage induced by ionizing radiation depends on the Nbs1 component of the MRN complex and is stabilized by the mediator of DNA damage checkpoint protein 1 (Mdc1). We find that Nbs1 is required for Mre11 localization at DNA replication foci in Ad E4 mutant infections. Mre11 is important for Mdc1 foci formation in infected cells, consistent with its role as a sensor of DNA damage. Chromatin immunoprecipitation assays indicate that both Mre11 and Mdc1 are physically bound to viral DNA, which could account for their localization in viral DNA containing foci. Efficient binding of Mre11 to E4 mutant DNA depends on the presence of Nbs1, and is correlated with a significant E4 mutant DNA replication defect. Our results are consistent with a model in which physical interaction of Mre11 with viral DNA is mediated by Nbs1, and interferes with viral DNA replication.
Virology | 2003
Christoph C Carter; Reza Izadpanah; Eileen Bridge
A complex of the Adenovirus (Ad) early region 1b 55-kDa (E1b-55kDa) and early region 4 ORF6 34-kDa (E4-34kDa) proteins promotes viral late gene expression. E1b-55kDa and E4-34kDa have leucine-rich nuclear export signals (NESs) similar to that of HIV Rev. It was proposed that E1b-55kDa and/or E4-34kDa might promote the export of Ad late mRNA via their Rev-like NESs, and the transport receptor CRM1. We treated infected cells with the cytotoxin leptomycin B to inhibit CRM1-mediated export; treatment initially delays the onset of late gene expression, but this activity completely recovers as the late phase progresses. We find that the E1b-55kDa NES is not required to promote late gene expression. Previous results showed that E4-34kDa-mediated late gene expression does not require an intact NES (J. Virol. 74 (2000), 6684-6688). Our results indicate that these Ad regulatory proteins promote late gene expression without intact NESs or active CRM1.
Virology | 2003
Eileen Bridge; Karin Mattsson; Anders Aspegren; Arunima Sengupta
Adenovirus early region 4 (E4) mutants are defective for late gene expression and show reduced levels of late RNA in both the cytoplasm and the nucleus. These reductions reflect a posttranscriptional defect in the production of viral late RNA. We find that E4 mutants form replication centers during the initial stages of infection and are able to redistribute splicing factors to transcription sites that surround viral replication centers. However, E4 mutant infected cultures have reduced numbers of cells with splicing factors localized in enlarged interchromatin granule clusters during the late phase. Although the late-phase interchromatin granule clusters that formed in wild-type and E4 mutant infected cells had similar levels of poly(A) RNA, they contained reduced levels of viral RNA. These results suggest that E4 mutants do not efficiently accumulate viral late RNA in late-phase interchromatin granule clusters following the onset of late RNA transcription.
Journal of Virology | 2013
Dipendra Gautam; Eileen Bridge
ABSTRACT Adenovirus (Ad) mutants that lack early region 4 (E4) are unable to produce the early regulatory proteins that normally inactivate the Mre11/Rad50/Nbs1 (MRN) sensor complex, which is a critical component for the ability of cells to respond to DNA damage. E4 mutant infection therefore activates a DNA damage response, which in turn interferes with a productive viral infection. MRN complex proteins localize to viral DNA replication centers in E4 mutant-infected cells, and this complex is critical for activating the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), which phosphorylate numerous substrates important for DNA repair, cell cycle checkpoint activation, and apoptosis. E4 mutant growth defects are substantially rescued in cells lacking an intact MRN complex. We have assessed the role of the downstream ATM and ATR kinases in several MRN-dependent E4 mutant phenotypes. We did not identify a role for either ATM or ATR in “repair” of E4 mutant genomes to form concatemers. ATR was also not observed to contribute to E4 mutant defects in late protein production. In contrast, the kinase activity of ATM was important for preventing efficient E4 mutant DNA replication and late gene expression. Our results suggest that the MRN complex interferes with E4 mutant DNA replication at least in part through its ability to activate ATM.
Journal of Virology | 2012
Anand Prakash; Sumithra Jayaram; Eileen Bridge
ABSTRACT Adenovirus (Ad) mutants that lack early region 4 (E4) activate the phosphorylation of cellular DNA damage response proteins. In wild-type Ad type 5 (Ad5) infections, E1b and E4 proteins target the cellular DNA repair protein Mre11 for redistribution and degradation, thereby interfering with its ability to activate phosphorylation cascades important during DNA repair. The characteristics of Ad infection that activate cellular DNA repair processes are not yet well understood. We investigated the activation of DNA damage responses by a replication-defective Ad vector (AdRSVβgal) that lacks E1 and fails to produce the immediate-early E1a protein. E1a is important for activating early gene expression from the other viral early transcription units, including E4. AdRSVβgal can deliver its genome to the cell, but it is subsequently deficient for viral early gene expression and DNA replication. We studied the ability of AdRSVβgal-infected cells to induce cellular DNA damage responses. AdRSVβgal infection does activate formation of foci containing the Mdc1 protein. However, AdRSVβgal fails to activate phosphorylation of the damage response proteins Nbs1 and Chk1. We found that viral DNA replication is important for Nbs1 phosphorylation, suggesting that this step in the viral life cycle may provide an important trigger for activating at least some DNA repair proteins.
Methods in molecular medicine | 2007
Eileen Bridge
Investigating the cell biology of gene expression requires methodologies for localizing RNA relative to proteins involved in RNA transcription, processing, and export. Adenovirus is an important model system for the analysis of eukaryotic gene expression and is also being used to investigate the organization of gene expression within the nucleus. Here are described the combined in situ hybridization and immunofluorescence staining techniques that have been used to study the localization of viral RNA relative to nuclear structures that contain splicing factors.
Journal of Virology | 1995
Eileen Bridge; Dong-Xiang Xia; Maria Carmo-Fonseca; B Cardinali; Angus I. Lamond; Ulf Pettersson
Journal of Virology | 1993
Eileen Bridge; Maria Carmo-Fonseca; Angus I. Lamond; Ulf Pettersson