Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eileen I. Chang is active.

Publication


Featured researches published by Eileen I. Chang.


Circulation | 2012

Myosin Light Chain Phosphorylation is Critical for Adaptation to Cardiac Stress

Sonisha A. Warren; Laura E. Briggs; Huadong Zeng; Joyce Chuang; Eileen I. Chang; Ryota Terada; Moyi Li; Maurice S. Swanson; Stewart H. Lecker; Monte S. Willis; Francis G. Spinale; Julie Maupin-Furlowe; Julie R. McMullen; Richard L. Moss; Hideko Kasahara

Background— Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. Methods and Results— We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Conclusions— Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.


Physiological Genomics | 2013

Genomics of the fetal hypothalamic cellular response to transient hypoxia: endocrine, immune, and metabolic responses

Charles E. Wood; Maria Belen Rabaglino; Eileen I. Chang; Nancy D. Denslow; Maureen Keller-Wood; Elaine M. Richards

Fetuses respond to transient hypoxia (a common stressor in utero) with cellular responses that are appropriate for promoting survival of the fetus. The present experiment was performed to identify the acute genomic responses of the fetal hypothalamus to transient hypoxia. Three fetal sheep were exposed to 30 min of hypoxia and hypothalamic mRNA extracted from samples collected 30 min after return to normoxia. These samples were compared with those from four normoxic control fetuses by the Agilent 019921 ovine array. Differentially regulated genes were analyzed by network analysis and by gene ontology analysis, identifying statistically significant overrepresentation of biological processes. Real-time PCR of selected genes supported the validity of the array data. Hypoxia induced increased expression of genes involved in response to oxygen stimulus, RNA splicing, antiapoptosis, vascular smooth muscle proliferation, and positive regulation of Notch receptor target. Downregulated genes were involved in metabolism, antigen receptor-mediated immunity, macromolecular complex assembly, S-phase, translation elongation, RNA splicing, protein transport, and posttranscriptional regulation. We conclude that these results emphasize that the cellular response to hypoxia involves reduced metabolism, the involvement of the fetal immune system, and the importance of glucocorticoid signaling.


Circulation-cardiovascular Genetics | 2014

A Mouse Model of Human Congenital Heart Disease High Incidence of Diverse Cardiac Anomalies and Ventricular Noncompaction Produced by Heterozygous Nkx2-5 Homeodomain Missense Mutation

Hassan Ashraf; Lagnajeet Pradhan; Eileen I. Chang; Ryota Terada; Nicole J. Ryan; Laura E. Briggs; Rajib Chowdhury; Miguel A. Zárate; Yukiko Sugi; Hyun-Joo Nam; D. Woodrow Benson; Robert H. Anderson; Hideko Kasahara

Background—Heterozygous human mutations of NKX2-5 are highly penetrant and associated with varied congenital heart defects. The heterozygous knockout of murine Nkx2-5, in contrast, manifests less profound cardiac malformations, with low disease penetrance. We sought to study this apparent discrepancy between human and mouse genetics. Because missense mutations in the NKX2-5 homeodomain (DNA-binding domain) are the most frequently reported type of human mutation, we replicated this genetic defect in a murine knockin model. Methods and Results—We generated a murine model in a 129/Sv genetic background by knocking-in an Nkx2-5 homeodomain missense mutation previously identified in humans. The mutation was located at homeodomain position 52Arg→Gly (R52G). All the heterozygous neonatal Nkx2-5+/R52G mice demonstrated a prominent trabecular layer in the ventricular wall, so called noncompaction, along with diverse cardiac anomalies, including atrioventricular septal defects, Ebstein malformation of the tricuspid valve, and perimembranous and muscular ventricular septal defects. In addition, P10 Nkx2-5+/R52G mice demonstrated atrial sepal anomalies, with significant increase in the size of the interatrial communication and fossa ovalis, and decrease in the length of the flap valve compared with control Nkx2-5+/+ or Nkx2-5+/− mice. Conclusions—The results of our study demonstrate that heterozygous missense mutation in the murine Nkx2-5 homeodomain (R52G) is highly penetrant and result in pleiotropic cardiac effects. Thus, in contrast to heterozygous Nkx2-5 knockout mice, the effects of the heterozygous knockin mimic findings in humans with heterozygous missense mutation in NKX2-5 homeodomain.Background— Heterozygous human mutations of NKX2-5 are highly penetrant and associated with varied congenital heart defects. The heterozygous knockout of murine Nkx2-5 , in contrast, manifests less profound cardiac malformations, with low disease penetrance. We sought to study this apparent discrepancy between human and mouse genetics. Because missense mutations in the NKX2-5 homeodomain (DNA-binding domain) are the most frequently reported type of human mutation, we replicated this genetic defect in a murine knockin model. Methods and Results— We generated a murine model in a 129/Sv genetic background by knocking-in an Nkx2-5 homeodomain missense mutation previously identified in humans. The mutation was located at homeodomain position 52Arg→Gly (R52G). All the heterozygous neonatal Nkx2-5 +/ R52G mice demonstrated a prominent trabecular layer in the ventricular wall, so called noncompaction, along with diverse cardiac anomalies, including atrioventricular septal defects, Ebstein malformation of the tricuspid valve, and perimembranous and muscular ventricular septal defects. In addition, P10 Nkx2-5 +/ R52G mice demonstrated atrial sepal anomalies, with significant increase in the size of the interatrial communication and fossa ovalis, and decrease in the length of the flap valve compared with control Nkx2-5 +/+ or Nkx2-5 +/− mice. Conclusions— The results of our study demonstrate that heterozygous missense mutation in the murine Nkx2-5 homeodomain ( R52G ) is highly penetrant and result in pleiotropic cardiac effects. Thus, in contrast to heterozygous Nkx2-5 knockout mice, the effects of the heterozygous knockin mimic findings in humans with heterozygous missense mutation in NKX2-5 homeodomain.


The Journal of Physiology | 2016

Ketamine suppresses hypoxia‐induced inflammatory responses in the late‐gestation ovine fetal kidney cortex

Eileen I. Chang; Miguel A. Zárate; Maria Belen Rabaglino; Elaine M. Richards; Maureen Keller-Wood; Charles E. Wood

The fetus responds to decreases in arterial partial pressure of oxygen by redirecting the blood flow mainly to the brain and the heart, at a cost to other peripheral organs like the kidneys. Renal hypoxia and ischaemia stimulate inflammatory and apoptotic responses. Ketamine, an NMDA receptor antagonist, is able to reduce renal immune and inflammatory gene expressions stimulated by hypoxia. Ketamine may have therapeutic potential for protection against ischaemic renal damage in fetuses subjected to acute hypoxia.


Physiological Genomics | 2014

Transcriptomics of the fetal hypothalamic response to brachiocephalic occlusion and estradiol treatment

Charles E. Wood; Maria Belen Rabaglino; Elaine M. Richards; Nancy D. Denslow; Miguel A. Zárate; Eileen I. Chang; Maureen Keller-Wood

Estradiol (E2) is a well-known modulator of fetal neuroendocrine activity and has been proposed as a critical endocrine signal readying the fetus for birth and postnatal life. To investigate the modulatory role of E2 on fetal stress responsiveness and the response of the fetal brain to asphyxic stress, we subjected chronically catheterized fetal sheep to a transient (10 min) brachiocephalic artery occlusion (BCO) or sham occlusion. Half of the fetuses received subcutaneous pellets that increased plasma E2 concentrations within the physiological range. Hypothalamic mRNA was analyzed using the Agilent 8x15k ovine array (019921), processed and annotated as previously reported by our laboratory. Analysis of the data by ANOVA revealed that E2 differentially regulated (DR) 561 genes, and BCO DR 894 genes compared with control and E2+BCO DR 1,153 genes compared with BCO alone (all P < 0.05). E2 upregulated epigenetic pathways and downregulated local steroid biosynthesis but did not significantly involve genes known to directly respond to the estrogen receptor. Brachiocephalic occlusion upregulated kinase pathways as well as genes associated with lymphocyte infiltration into the brain and downregulated neuropeptide synthesis. E2 upregulated immune- and apoptosis-related pathways after BCO and reduced kinase and epigenetic pathway responses to the BCO. Responses to BCO are different from responses to hypoxic hypoxia suggesting that mechanisms of responses to these two forms of brain hypoxia are distinct. We conclude that cerebral ischemia caused by BCO might stimulate lymphocyte infiltration into the brain and that this response appears to be modified by estradiol.


Physiological Reports | 2016

Ketamine decreases inflammatory and immune pathways after transient hypoxia in late gestation fetal cerebral cortex

Eileen I. Chang; Miguel A. Zárate; Maria Belen Rabaglino; Elaine M. Richards; Thomas J. Arndt; Maureen Keller-Wood; Charles E. Wood

Transient hypoxia in pregnancy stimulates a physiological reflex response that redistributes blood flow and defends oxygen delivery to the fetal brain. We designed the present experiment to test the hypotheses that transient hypoxia produces damage of the cerebral cortex and that ketamine, an antagonist of NMDA receptors and a known anti‐inflammatory agent, reduces the damage. Late gestation, chronically catheterized fetal sheep were subjected to a 30‐min period of ventilatory hypoxia that decreased fetal PaO2 from 17 ± 1 to 10 ± 1 mmHg, or normoxia (PaO2 17 ± 1 mmHg), with or without pretreatment (10 min before hypoxia/normoxia) with ketamine (3 mg/kg, i.v.). One day (24 h) after hypoxia/normoxia, fetal cerebral cortex was removed and mRNA extracted for transcriptomics and systems biology analysis (n = 3–5 per group). Hypoxia stimulated a transcriptomic response consistent with a reduction in cellular metabolism and an increase in inflammation. Ketamine pretreatment reduced both of these responses. The inflammation response modeled with transcriptomic systems biology was validated by immunohistochemistry and showed increased abundance of microglia/macrophages after hypoxia in the cerebral cortical tissue that ketamine significantly reduced. We conclude that transient hypoxia produces inflammation of the fetal cerebral cortex and that ketamine, in a standard clinical dose, reduces the inflammation response.


Endocrinology | 2016

Genomic Effect of Triclosan on the Fetal Hypothalamus: Evidence for Altered Neuropeptide Regulation

Maria Belen Rabaglino; Eileen I. Chang; Elaine M. Richards; Margaret O. James; Maureen Keller-Wood; Charles E. Wood

Triclosan (TCS), an antibacterial compound commonly added to personal care products, could be an endocrine disruptor at low doses. Although TCS has been shown to alter fetal physiology, its effects in the developing fetal brain are unknown. We hypothesize that exposure to TCS during fetal life could affect fetal hypothalamic gene expression. The objective of this study was to use transcriptomics and systems analysis to identify significantly altered biological processes in the late gestation ovine fetal hypothalamus after direct or indirect exposure to low doses of TCS. For direct TCS exposure, chronically catheterized late gestation fetal sheep were infused with vehicle (n = 4) or TCS (250 μg/d; n = 4) iv. For indirect TCS exposure, TCS (100 μg/kg · d; n = 3) or vehicle (n = 3) was infused into the maternal circulation. Fetal hypothalami were collected after 2 days of infusion, and gene expression was measured through microarray. Hierarchical clustering of all samples according to gene expression profiles showed that samples from the TCS-treated animals clustered apart from the controls. Gene set enrichment analysis revealed that fetal hypothalamic genes stimulated by maternal and fetal TCS infusion were significantly enriching for cell cycle, reproductive process, and feeding behavior, whereas the inhibited genes were significantly enriching for chromatin modification and metabolism of steroids, lipoproteins, fatty acids, and glucose (P < .05). In conclusion, short-term infusion of TCS induces vigorous changes in the fetal hypothalamic transcriptomics, which are mainly related to food intake pathways and metabolism. If these changes persist to postnatal life, they could result in adverse consequences in adulthood.


Neonatology | 2015

Ketamine Attenuates the ACTH Response to Hypoxia in Late-Gestation Ovine Fetus.

Eileen I. Chang; Charles E. Wood

Background: Ketamine, a noncompetitive N-Methyl-D-aspartate (NMDA) receptor antagonist, is a commonly used dissociative anesthetic in neonatology. We have proposed that ketamine reduces fetal stress responsiveness to stimuli that involve reduced oxygen supply to the fetal brain. Previously, we have shown that ketamine inhibits plasma ACTH levels in late-gestation fetal sheep subjected to brachiocephalic artery occlusion (BCO), an ischemic hypoxia model that might activate some of the same direct and reflex responses as hypoxia. Objectives: We performed the current study to test the hypothesis that ketamine pretreatment will reduce fetal ACTH responses to hypoxic hypoxia (HH). Methods: Fetal sheep were chronically catheterized at least 5 days prior to study. Ketamine (3 mg/kg) was administered intravenously to the fetus 10 min prior to normoxia or a period of hypoxia induced by administration of nitrogen gas to the maternal trachea for 30 min. Results: Hypoxia significantly increased both fetal ACTH and cortisol levels in both the control and ketamine groups (p < 0.0005, interaction effect of time·stimulus in two-way ANOVA), and the ACTH response was blunted by ketamine (p < 0.005). Conclusions: Ketamine reduced fetal ACTH responses to HH, possibly due to antagonism of the NMDA receptors in the fetal brain. Interestingly, in contrast to the responses to BCO, ACTH responses to HH were only partially inhibited, suggesting that multiple neurotransmitter pathways mediate the ACTH response to HH.


Scientific Reports | 2017

Post-hypoxia Invasion of the fetal brain by multidrug resistant Staphylococcus

Miguel A. Zárate; Michelle Rodriguez; Eileen I. Chang; Jordan T. Russell; Thomas J. Arndt; Elaine M. Richards; Beronica A. Ocasio; Eva Aranda; Elizabeth M. Gordon; Kevin Yu; Josef Neu; Maureen Keller-Wood; Eric W. Triplett; Charles E. Wood

Herein we describe an association between activation of inflammatory pathways following transient hypoxia and the appearance of the multidrug resistant bacteria Staphylococcus simulans in the fetal brain. Reduction of maternal arterial oxygen tension by 50% over 30 min resulted in a subseiuent significant over-expression of genes associated with immune responses 24 h later in the fetal brain. The activated genes were consistent with stimulation by bacterial lipopolysaccharide; an influx of macrophages and appearance of live bacteria were found in these fetal brains. S. simulans was the predominant bacterial species in fetal brain after hypoxia, but was found in placenta of all animals. Strains of S. simulans from the placenta and fetal brain were equally highly resistant to multiple antibiotics including methicillin and had identical genome sequences. These results suggest that bacteria from the placenta invade the fetal brain after maternal hypoxia.


Physiological Reports | 2016

Ketamine modulates fetal hemodynamic and endocrine responses to umbilical cord occlusion

Miguel A. Zárate; Eileen I. Chang; Andrew Antolic; Charles E. Wood

Umbilical cord occlusion (UCO) is a hypoxic insult that has been used to model birth asphyxia and umbilical cord compression in utero. UCO triggers vigorous neural and endocrine responses that include increased plasma ACTH and cortisol concentrations, increased blood pressure (BP), and decreased heart rate (HR). We have previously reported that ketamine, a noncompetitive N‐methyl‐D‐aspartate receptor antagonist, can modify the fetal hemodynamic and ACTH responses to ventilatory hypoxia and cerebral ischemia‐reperfusion. We performed the present experiments to test the hypothesis that ketamine has similar effects on the neuroendocrine and cardiovascular responses to UCO. Fetal sheep were chronically catheterized at gestational day 125. Ketamine (3 mg/kg) was administered intravenously to the fetus 10 min prior to the insult. UCO was induced for 30 min by reducing the umbilical vein blood flow until fetal PaO2 levels were reduced from 17 ± 1 to 11 ± 1 mm Hg. UCO produced an initial increase on fetal BP in both control and ketamine groups (P = 0.018 time), followed by a decrease in the control group, but values remained higher with ketamine. HR decreased after UCO (P = 0.041 stimulus*time) in both groups, but the reduction was greater initially in control compared to ketamine groups. Fetal PaCO2 levels increased after UCO (P < 0.01 stimulus*time), but values were higher in the control versus ketamine groups. UCO significantly decreased fetal pH values (P < 0.01 stimulus*time) with a greater effect on the control versus ketamine group. Ketamine delayed the cortisol responses to UCO (P < 0.001 stimulus*time), and UCO produced a robust increase in ACTH levels from 19 ± 2 to 280 ± 27 pg/mL (P < 0.001 stimulus*time), but there were no differences in ACTH levels between UCO groups. We conclude that ketamine augmented the cardiovascular response to UCO, but did not alter the ACTH response to UCO.

Collaboration


Dive into the Eileen I. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Woodrow Benson

Children's Hospital of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge