Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eileen M. Foecking is active.

Publication


Featured researches published by Eileen M. Foecking.


Biology of Reproduction | 2005

Neuroendocrine Consequences of Prenatal Androgen Exposure in the Female Rat: Absence of Luteinizing Hormone Surges, Suppression of Progesterone Receptor Gene Expression, and Acceleration of the Gonadotropin-Releasing Hormone Pulse Generator

Eileen M. Foecking; Marta Szabo; Neena B. Schwartz; Jon E. Levine

Abstract Preovulatory GnRH and LH surges depend on activation of estrogen (E2)-inducible progesterone receptors (PGRs) in the preoptic area (POA). Surges do not occur in males, or in perinatally androgenized females. We sought to determine whether prenatal androgen exposure suppresses basal or E2-induced Pgr mRNA expression or E2-induced LH surges (or both) in adulthood, and whether any such effects may be mediated by androgen receptor activation. We also assessed whether prenatal androgens alter subsequent GnRH pulsatility. Pregnant rats received testosterone or vehicle daily on Embryonic Days 16–19. POA-hypothalamic tissues were obtained in adulthood for PgrA and PgrB (PgrA+B) mRNA analysis. Females that had prenatal exposure to testosterone (pT) displayed reduced PgrA+B mRNA levels (P < 0.01) compared with those that had prenatal exposure to vehicle (pV). Additional pregnant animals were treated with vehicle or testosterone, or with 5α-dihydrotestosterone (DHT). In adult ovariectomized offspring, estradiol benzoate produced a 2-fold increase (P < 0.05) in PgrA+B expression in the POA of pV females, but not in pT females or those that had prenatal exposure to DHT (pDHT). Prenatal testosterone and DHT exposure also prevented estradiol benzoate-induced LH surges observed in pV rats. Blood sampling of ovariectomized rats revealed increased LH pulse frequency in pDHT versus pV females (P < 0.05). Our findings support the hypothesis that prenatal androgen receptor activation can contribute to the permanent defeminization of the GnRH neurosecretory system, rendering it incapable of initiating GnRH surges, while accelerating basal GnRH pulse generator activity in adulthood. We propose that the effects of prenatal androgen receptor activation on GnRH neurosecretion are mediated in part via permanent impairment of E2-induced PgrA+B gene expression in the POA.


American Journal of Physiology-endocrinology and Metabolism | 2008

Transient prenatal androgen exposure produces metabolic syndrome in adult female rats

Marek Demissie; Milos Lazic; Eileen M. Foecking; Fraser Aird; Andrea Dunaif; Jon E. Levine

Androgen exposure during intrauterine life in nonhuman primates and in sheep results in a phenocopy of the reproductive and metabolic features of polycystic ovary syndrome (PCOS). Such exposure also results in reproductive features of PCOS in rodents. We investigated whether transient prenatal androgen treatment produced metabolic abnormalities in adult female rats and the mechanisms of these changes. Pregnant dams received free testosterone or vehicle injections during late gestation, and their female offspring were fed regular or high-fat diet (HFD). At 60 days of age, prenatally androgenized (PA) rats exhibited significantly increased body weight; parametrial and subcutaneous fat; serum insulin, cholesterol and triglyceride levels; and hepatic triglyceride content (all P < 0.0125). There were no significant differences in insulin sensitivity by intraperitoneal insulin tolerance test or insulin signaling in liver or skeletal muscle. HFD had similar effects to PA on body weight and composition as well as on circulating triglyceride levels. HFD further increased hepatic triglyceride content to a similar extent in both PA and control rats. In PA rats, HFD did not further increase circulating insulin, triglyceride, or cholesterol levels. In control rats, HFD increased insulin levels, but to a lesser extent than PA alone ( approximately 2.5- vs. approximately 12-fold, respectively). We conclude that transient prenatal androgen exposure produces features of the metabolic syndrome in adult female rats. Dyslipidemia and hepatic steatosis appear to be mediated by PA-induced increases in adiposity, whereas hyperinsulinemia appears to be a direct result of PA.


Experimental Neurology | 2010

Electrical stimulation and testosterone differentially enhance expression of regeneration-associated genes.

Nijee Sharma; Sam J. Marzo; Kathryn J. Jones; Eileen M. Foecking

As functional recovery following peripheral nerve injury is dependent upon successful repair and regeneration, treatments that enhance different regenerative events may be advantageous. Using a rat facial nerve crush axotomy model, our lab has previously investigated the effects of a combinatorial treatment strategy, consisting of electrical stimulation (ES) of the proximal nerve stump and testosterone propionate (TP) administration. Results indicated that the two treatments differentially enhance facial nerve regenerative properties, whereby ES reduced the delay before sprout formation, TP accelerated the overall regeneration rate, and the combinatorial treatment had additive effects. To delineate the molecular mechanisms underlying such treatments, the present study investigated the effects of ES and TP on expression of specific regeneration-associated genes. Following a right facial nerve crush at the stylomastoid foramen, gonadectomized adult male rats were administered only ES, only TP, a combination of both, or left untreated. Real time RT-PCR analysis was used to assess fold changes in mRNA levels in the facial motor nucleus at 0 h, 6 h, 1 d, 2 d, 7 d, and 21 d post-axotomy. The candidate genes analyzed included two tubulin isoforms (alpha(1)-tubulin and beta(II)-tubulin), 43-kiloDalton growth-associated protein (GAP-43), brain derived neurotrophic factor (BDNF), pituitary adenylate cyclase-activating peptide (PACAP), and neuritin (candidate plasticity-related gene 15). The two treatments have differential effects on gene expression, with ES leading to early but transient upregulation and TP producing late but steady increases in mRNA levels. In comparison to individual treatments, the combinatorial treatment strategy has the most enhanced effects on the transcriptional program activated following injury.


Otolaryngology-Head and Neck Surgery | 2008

Electrical stimulation facilitates rat facial nerve recovery from a crush injury

Devyani Lal; Laura Hetzler; Nijee Sharma; Robert D. Wurster; Sam J. Marzo; Kathryn J. Jones; Eileen M. Foecking

Objective To study the effect of electrical stimulation on accelerating facial nerve functional recovery from a crush injury in the rat model. Study Design Experimental. Method The main trunk of the right facial nerve was crushed just distal to the stylomastoid foramen, causing right-sided facial paralysis in 17 Sprague-Dawley rats. An electrode apparatus was implanted in all rats. Nine rats underwent electrical stimulation and eight were sham stimulated until complete facial nerve recovery. Facial nerve function was assessed daily by grading eyeblink reflex, vibrissae orientation, and vibrissae movement. Results An electrical stimulation model of the rat facial nerve following axotomy was established. The semi-eyeblink returned significantly earlier (3.71 + 0.97 vs 9.57 + 1.86 days post axotomy) in stimulated rats (P = 0.008). Stimulated rats also recovered all functions earlier, and showed less variability in recovery time. Conclusion Electrical stimulation initiates and accelerates facial nerve recovery in the rat model as it significantly reduces recovery time for the semi-eyeblink reflex, a marker of early recovery. It also hastens recovery of other functions.


Hormones and Behavior | 2008

Neuroendocrine Consequences of Androgen Excess in Female Rodents

Eileen M. Foecking; Melissa A. McDevitt; Maricedes Acosta-Martinez; Teresa H. Horton; Jon E. Levine

Androgens exert significant organizational and activational effects on the nervous system and behavior. Despite the fact that female mammals generally produce low levels of androgens, relative to the male of the same species, increasing evidence suggests that androgens can exert profound effects on the normal physiology and behavior of females during fetal, neonatal, and adult stages of life. This review examines the effects of exposure to androgens at three stages of development--as an adult, during early postnatal life and as a fetus, on reproductive hormone secretions in female rats. We examine the effects of androgen exposure both as a model of neuroendocrine sexual differentiation and with respect to the role androgens play in the normal female. We then discuss the hypothesis that androgens may cause epigenetic modification of estrogen target genes in the brain. Finally we consider the clinical consequences of excess androgen exposure in women.


Frontiers in Neuroendocrinology | 2009

Neuroprotective actions of androgens on motoneurons

Keith N. Fargo; Eileen M. Foecking; Kathryn J. Jones; Dale R. Sengelaub

Androgens have a variety of protective and therapeutic effects in both the central and peripheral nervous systems. Here we review these effects as they related specifically to spinal and cranial motoneurons. Early in development, androgens are critical for the formation of important neuromuscular sex differences, decreasing the magnitude of normally occurring cell death in select motoneuron populations. Throughout the lifespan, androgens also protect against motoneuron death caused by axonal injury. Surviving motoneurons also display regressive changes to their neurites as a result of both direct axonal injury and loss of neighboring motoneurons. Androgen treatment enhances the ability of motoneurons to recover from these regressive changes and regenerate both axons and dendrites, restoring normal neuromuscular function. Androgens exert these protective effects by acting through a variety of molecular pathways. Recent work has begun to examine how androgen treatment can interact with other treatment strategies in promoting recovery from motoneuron injury.


Otolaryngology-Head and Neck Surgery | 2008

Accelerating functional recovery after rat facial nerve injury: Effects of gonadal steroids and electrical stimulation

Laura T. Hetzler; Nijee Sharma; Lisa Tanzer; Robert D. Wurster; John P. Leonetti; Sam J. Marzo; Kathryn J. Jones; Eileen M. Foecking

Objective We investigated the combined effects of electrical stimulation and testosterone propionate on overall recovery time in rats with extracranial crush injuries to the facial nerve. Study Design Male rats underwent castration 3 to 5 days prior to right facial nerve crush injury and electrode implantation. Rats were randomly assigned to two groups: crush injury + testosterone or crush injury with electrical stimulation + testosterone. Recovery was assessed by daily subjective examination documenting vibrissae orientation/movement, semi-eye blink, and full eye blink. Results Milestones of early recovery were noted to be significantly earlier in the groups with electrical stimulation, with/without testosterone. The addition of testosterone to electrical stimulation showed significant earlier return of late recovery parameters and complete overall recovery. Conclusion Electrical stimulation may decrease cell death or promote sprouting to accelerate early recovery. Testosterone may affect the actual rate of axonal regeneration and produce acceleration in functional recovery. By targeting different stages of neural regeneration, the synergy of electrical stimulation and testosterone appears to have promise as a neurotherapeutic strategy for facial nerve injury.


Hormones and Behavior | 2008

Androgen regulation of axon growth and neurite extension in motoneurons

Keith N. Fargo; Mariarita Galbiati; Eileen M. Foecking; Angelo Poletti; Kathryn J. Jones

Androgens act on the CNS to affect motor function through interaction with a widespread distribution of intracellular androgen receptors (AR). This review highlights our work on androgens and process outgrowth in motoneurons, both in vitro and in vivo. The actions of androgens on motoneurons involve the generation of novel neuronal interactions that are mediated by the induction of androgen-dependent neurite or axonal outgrowth. Here, we summarize the experimental evidence for the androgenic regulation of the extension and regeneration of motoneuron neurites in vitro using cultured immortalized motoneurons, and axons in vivo using the hamster facial nerve crush paradigm. We place particular emphasis on the relevance of these effects to SBMA and peripheral nerve injuries.


Journal of Rehabilitation Research and Development | 2012

Single session of brief electrical stimulation immediately following crush injury enhances functional recovery of rat facial nerve.

Eileen M. Foecking; Keith N. Fargo; Lisa M. Coughlin; James T. Kim; Sam J. Marzo; Kathryn J. Jones

Peripheral nerve injuries lead to a variety of pathological conditions, including paresis or paralysis when the injury involves motor axons. We have been studying ways to enhance the regeneration of peripheral nerves using daily electrical stimulation (ES) following a facial nerve crush injury. In our previous studies, ES was not initiated until 24 h after injury. The current experiment tested whether ES administered immediately following the crush injury would further decrease the time for complete recovery from facial paralysis. Rats received a unilateral facial nerve crush injury and an electrode was positioned on the nerve proximal to the crush site. Animals received daily 30 min sessions of ES for 1 d (day of injury only), 2 d, 4 d, 7 d, or daily until complete functional recovery. Untreated animals received no ES. Animals were observed daily for the return of facial function. Our findings demonstrated that one session of ES was as effective as daily stimulation at enhancing the recovery of most functional parameters. Therefore, the use of a single 30 min session of ES as a possible treatment strategy should be studied in human patients with paralysis as a result of acute nerve injuries.


Restorative Neurology and Neuroscience | 2009

Effects of electrical stimulation and gonadal steroids on rat facial nerve regenerative properties

Nijee Sharma; Lisa M. Coughlin; Ryan G. Porter; Lisa Tanzer; Robert D. Wurster; Sam J. Marzo; Kathryn J. Jones; Eileen M. Foecking

PURPOSE The neurotherapeutic effects of nerve electrical stimulation and gonadal steroids have independently been demonstrated. The purpose of this study was to investigate the therapeutic potential of a combinatorial treatment strategy of electrical stimulation and gonadal steroids on peripheral nerve regeneration. METHODS Following a facial nerve crush axotomy in gonadectomized adult male rats, testosterone propionate (TP), dihydrotestosterone (DHT), or estradiol (E(2)) was systemically administered with/without daily electrical stimulation of the proximal nerve stump. Facial nerve outgrowth was assessed at 4 and 7 days post-axotomy using radioactive labeling. RESULTS Administration of electrical stimulation alone reduced the estimated delay in sprout formation but failed to accelerate the overall regeneration rate. Conversely, TP treatment alone accelerated the regeneration rate by approximately 10% but had no effect on the sprouting delay. Combining TP with electrical stimulation, however, maintained the enhanced rate and reduced the sprouting delay. DHT treatment alone failed to alter the regeneration rate but combining it with electrical stimulation increased the rate by 10%. E(2) treatment alone increased the regeneration rate by approximately 5% but with electrical stimulation, there was no additional effect. CONCLUSIONS Electrical stimulation and gonadal steroids differentially enhanced regenerative properties. TP, an aromatizable androgen, augmented regeneration most, suggesting a synergism between androgenic and estrogenic effects. Therapeutically, combining electrical stimulation with gonadal steroids may boost regenerative properties more than the use of either treatment alone.

Collaboration


Dive into the Eileen M. Foecking's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam J. Marzo

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Nijee Sharma

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Keith N. Fargo

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Jon E. Levine

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gina N. Monaco

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

John P. Leonetti

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven J. Charous

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge