Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eileen M. Shore is active.

Publication


Featured researches published by Eileen M. Shore.


Nature Medicine | 2010

Conversion of vascular endothelial cells into multipotent stem-like cells

Damian Medici; Eileen M. Shore; Vitali Y. Lounev; Frederick S. Kaplan; Raghu Kalluri; Björn Olsen

Mesenchymal stem cells can give rise to several cell types, but varying results depending on isolation methods and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an activin-like kinase-2 (ALK2) receptor–dependent mechanism. In lesions from individuals with fibrodysplasia ossificans progressiva (FOP), a disease in which heterotopic ossification occurs as a result of activating ALK2 mutations, or from transgenic mice expressing constitutively active ALK2, chondrocytes and osteoblasts expressed endothelial markers. Lineage tracing of heterotopic ossification in mice using a Tie2-Cre construct also suggested an endothelial origin of these cell types. Expression of constitutively active ALK2 in endothelial cells caused endothelial-to-mesenchymal transition and acquisition of a stem cell–like phenotype. Similar results were obtained by treatment of untransfected endothelial cells with the ligands transforming growth factor-β2 (TGF-β2) or bone morphogenetic protein-4 (BMP4) in an ALK2-dependent manner. These stem-like cells could be triggered to differentiate into osteoblasts, chondrocytes or adipocytes. We suggest that conversion of endothelial cells to stem-like cells may provide a new approach to tissue engineering.


The New England Journal of Medicine | 1996

OVEREXPRESSION OF AN OSTEOGENIC MORPHOGEN IN FIBRODYSPLASIA OSSIFICANS PROGRESSIVA

Adam B. Shafritz; Eileen M. Shore; Francis H. Gannon; Michael Zasloff; Rebecca Taub; Maximilian Muenke; Frederick S. Kaplan

BACKGROUND Fibrodysplasia ossificans progressiva is a heritable disorder of connective tissue characterized by congenital malformation of the great toes and postnatal formation of ectopic bone. Although the disorder was first described more than 300 years ago, the genetic defect and pathophysiology remain unknown. Bone morphogenetic proteins are potent bone-inducing morphogens that participate in the developmental organization of the skeleton, and increased production of one or more of these proteins has been proposed as the cause of fibrodysplasia ossificans progressiva. METHODS We studied lymphoblastoid cell lines established from peripheral-blood mononuclear cells of patients with fibrodysplasia ossificans progressiva and fibroblast-like cell lines derived from lesional and nonlesional tissue. We used Northern blot analysis and ribonuclease protection assays to measure the expression of messenger RNA (mRNA) of bone morphogenetic proteins 1 to 7 and immunohistochemical analysis to examine protein expression. RESULTS Among the bone morphogenetic proteins and mRNAs examined, only bone morphogenetic protein 4 and its mRNA were present in increased levels in cells derived from an early fibroproliferative lesion in a patient with fibrodysplasia ossificans progressiva. Bone morphogenetic protein 4 mRNA was expressed in lymphoblastoid cell lines from 26 of 32 patients with fibrodysplasia ossificans progressiva but from only 1 of 12 normal subjects (P<0.001). Bone morphogenetic protein 4 and its mRNA were detected in the lymphoblastoid cell lines from a man with fibrodysplasia ossificans progressiva and his three affected children (two girls and a boy), but not from the childrens unaffected mother. No other bone morphogenetic proteins were detected. CONCLUSIONS Overexpression of a potent bone-inducing morphogen (bone morphogenetic protein 4) in lymphocytes is associated with the disabling ectopic osteogenesis of fibrodysplasia ossificans progressiva.


Human Mutation | 2009

Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1

Frederick S. Kaplan; Meiqi Xu; Petra Seemann; J. Michael Connor; David L. Glaser; Liam Carroll; Patricia Delai; Elisabeth Fastnacht-Urban; Stephen J. Forman; Gabriele Gillessen-Kaesbach; Julie Hoover-Fong; Bernhard Köster; Richard M. Pauli; William Reardon; Syed Adeel Zaidi; Michael Zasloff; Rolf Morhart; Stefan Mundlos; Jay Groppe; Eileen M. Shore

Fibrodysplasia ossificans progressiva (FOP) is an autosomal dominant human disorder of bone formation that causes developmental skeletal defects and extensive debilitating bone formation within soft connective tissues (heterotopic ossification) during childhood. All patients with classic clinical features of FOP (great toe malformations and progressive heterotopic ossification) have previously been found to carry the same heterozygous mutation (c.617G>A; p.R206H) in the glycine and serine residue (GS) activation domain of activin A type I receptor/activin‐like kinase 2 (ACVR1/ALK2), a bone morphogenetic protein (BMP) type I receptor. Among patients with FOP‐like heterotopic ossification and/or toe malformations, we identified patients with clinical features unusual for FOP. These atypical FOP patients form two classes: FOP‐plus (classic defining features of FOP plus one or more atypical features) and FOP variants (major variations in one or both of the two classic defining features of FOP). All patients examined have heterozygous ACVR1 missense mutations in conserved amino acids. While the recurrent c.617G>A; p.R206H mutation was found in all cases of classic FOP and most cases of FOP‐plus, novel ACVR1 mutations occur in the FOP variants and two cases of FOP‐plus. Protein structure homology modeling predicts that each of the amino acid substitutions activates the ACVR1 protein to enhance receptor signaling. We observed genotype‐phenotype correlation between some ACVR1 mutations and the age of onset of heterotopic ossification or on embryonic skeletal development. Hum Mutat 0, 1–12, 2008.


Journal of Bone and Joint Surgery, American Volume | 2009

Identification of progenitor cells that contribute to heterotopic skeletogenesis.

Vitali Y. Lounev; Michael N. Wosczyna; Masakazu Yamamoto; Andrew D. A. Maidment; Eileen M. Shore; David L. Glaser; David J. Goldhamer; Frederick S. Kaplan

BACKGROUND Individuals who have fibrodysplasia ossificans progressiva develop an ectopic skeleton because of genetic dysregulation of bone morphogenetic protein (BMP) signaling in the presence of inflammatory triggers. The identity of progenitor cells that contribute to various stages of BMP-induced heterotopic ossification relevant to fibrodysplasia ossificans progressiva and related disorders is unknown. An understanding of the cellular basis of heterotopic ossification will aid in the development of targeted, cell-specific therapies for the treatment and prevention of heterotopic ossification. METHODS We used Cre/loxP lineage tracing methods in the mouse to identify cell lineages that contribute to all stages of heterotopic ossification. Specific cell populations were permanently labeled by crossing lineage-specific Cre mice with the Cre-dependent reporter mice R26R and R26R-EYFP. Two mouse models were used to induce heterotopic ossification: (1) intramuscular injection of BMP2/Matrigel and (2) cardiotoxin-induced skeletal muscle injury in transgenic mice that misexpress BMP4 at the neuromuscular junction. The contribution of labeled cells to fibroproliferative lesions, cartilage, and bone was evaluated histologically by light and fluorescence microscopy. The cell types evaluated as possible progenitors included skeletal muscle stem cells (MyoD-Cre), endothelium and endothelial precursors (Tie2-Cre), and vascular smooth muscle (Smooth Muscle Myosin Heavy Chain-Cre [SMMHC-Cre]). RESULTS Vascular smooth muscle cells did not contribute to any stage of heterotopic ossification in either mouse model. Despite the osteogenic response of cultured skeletal myoblasts to BMPs, skeletal muscle precursors in vivo contributed minimally to heterotopic ossification (<5%), and this contribution was not increased by cardiotoxin injection, which induces muscle regeneration and mobilizes muscle stem cells. In contrast, cells that expressed the vascular endothelial marker Tie2/Tek at some time in their developmental history contributed robustly to the fibroproliferative, chondrogenic, and osteogenic stages of the evolving heterotopic endochondral anlagen. Importantly, endothelial markers were expressed by cells at all stages of heterotopic ossification. Finally, muscle injury and associated inflammation were sufficient to trigger fibrodysplasia ossificans progressiva-like heterotopic ossification in a setting of chronically stimulated BMP activity. CONCLUSIONS Tie2-expressing progenitor cells, which are endothelial precursors, respond to an inflammatory trigger, differentiate through an endochondral pathway, contribute to every stage of the heterotopic endochondral anlagen, and form heterotopic bone in response to overactive BMP signaling in animal models of fibrodysplasia ossificans progressiva. Thus, the ectopic skeleton is not only supplied by a rich vasculature, but appears to be constructed in part by cells of vascular origin. Further, these data strongly suggest that dysregulation of the BMP signaling pathway and an inflammatory microenvironment are both required for the formation of fibrodysplasia ossificans progressiva-like lesions.


Journal of Bone and Mineral Research | 2000

Progressive Osseous Heteroplasia

Frederick S. Kaplan; Eileen M. Shore

Progressive osseous heteroplasia (POH) is a recently described genetic disorder of mesenchymal differentiation characterized by dermal ossification during infancy and progressive heterotopic ossification of cutaneous, subcutaneous, and deep connective tissues during childhood. The disorder can be distinguished from fibrodysplasia ossificans progressiva (FOP) by the presence of cutaneous ossification, the absence of congenital malformations of the skeleton, the absence of inflammatory tumorlike swellings, the asymmetric mosaic distribution of lesions, the absence of predictable regional patterns of heterotopic ossification, and the predominance of intramembranous rather than endochondral ossification. POH can be distinguished from Albright hereditary osteodystrophy (AHO) by the progression of heterotopic ossification from skin and subcutaneous tissue into skeletal muscle, the presence of normal endocrine function, and the absence of a distinctive habitus associated with AHO. Although the genetic basis of POH is unknown, inactivating mutations of the GNAS1 gene are associated with AHO. The report in this issue of the JBMR of 2 patients with combined features of POH and AHO—one with classic AHO, severe POH‐like features, and reduced levels of Gsα protein and one with mild AHO, severe POH‐like features, reduced levels of Gsα protein, and a mutation in GNAS1—suggests that classic POH also could be caused by GNAS1 mutations. This possibility is further supported by the identification of a patient with atypical but severe platelike osteoma cutis (POC) and a mutation in GNAS1, indicating that inactivating mutations in GNAS1 may lead to severe progressive heterotopic ossification of skeletal muscle and deep connective tissue independently of AHO characteristics. These observations suggest that POH may lie at one end of a clinical spectrum of ossification disorders mediated by abnormalities in GNAS1 expression and impaired activation of adenylyl cyclase. Analysis of patients with classic POH (with no AHO features) is necessary to determine whether the molecular basis of POH is caused by inactivating mutations in the GNAS1 gene.


Journal of Clinical Investigation | 2009

The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization

Qi Shen; Shawn C. Little; Meiqi Xu; Julia Haupt; Cindy Ast; Takenobu Katagiri; Stefa N. Mundlos; Petra Seemann; Frederick S. Kaplan; Mary C. Mullins; Eileen M. Shore

Patients with classic fibrodysplasia ossificans progressiva, a disorder characterized by extensive extraskeletal endochondral bone formation, share a recurrent mutation (R206H) within the glycine/serine-rich domain of ACVR1/ALK2, a bone morphogenetic protein type I receptor. Through a series of in vitro assays using several mammalian cell lines and chick limb bud micromass cultures, we determined that mutant R206H ACVR1 activated BMP signaling in the absence of BMP ligand and mediated BMP-independent chondrogenesis that was enhanced by BMP. We further investigated the interaction of mutant R206H ACVR1 with FKBP1A, a glycine/serine domain-binding protein that prevents leaky BMP type I receptor activation in the absence of ligand. The mutant protein exhibited reduced binding to FKBP1A in COS-7 simian kidney cell line assays, suggesting that increased BMP pathway activity in COS-7 cells with R206H ACVR1 is due, at least in part, to decreased binding of this inhibitory factor. Consistent with these findings, in vivo analyses of zebrafish embryos showed BMP-independent hyperactivation of BMP signaling in response to the R206H mutant, resulting in increased embryonic ventralization. These data support the conclusion that the mutant R206H ACVR1 receptor in FOP patients is an activating mutation that induces BMP signaling in a BMP-independent and BMP-responsive manner to promote chondrogenesis, consistent with the ectopic endochondral bone formation in these patients.


Journal of Biological Chemistry | 2009

Constitutively Activated ALK2 and Increased SMAD1/5 Cooperatively Induce Bone Morphogenetic Protein Signaling in Fibrodysplasia Ossificans Progressiva

Toru Fukuda; Masakazu Kohda; Kazuhiro Kanomata; Junya Nojima; Atsushi Nakamura; Jyunji Kamizono; Yasuo Noguchi; Kiyofumi Iwakiri; Takeo Kondo; Junichi Kurose; Ken-ichi Endo; Takeshi Awakura; Jun Ichi Fukushi; Yasuharu Nakashima; Tomohiro Chiyonobu; Akira Kawara; Yoshihiro Nishida; Ikuo Wada; Masumi Akita; Tetsuo Komori; Konosuke Nakayama; Akira Nanba; Yuichi Maruki; Tetsuya Yoda; Hiroshi Tomoda; Paul B. Yu; Eileen M. Shore; Frederick S. Kaplan; Kohei Miyazono; Masaru Matsuoka

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by congenital malformation of the great toes and by progressive heterotopic bone formation in muscle tissue. Recently, a mutation involving a single amino acid substitution in a bone morphogenetic protein (BMP) type I receptor, ALK2, was identified in patients with FOP. We report here that the identical mutation, R206H, was observed in 19 Japanese patients with sporadic FOP. This mutant receptor, ALK2(R206H), activates BMP signaling without ligand binding. Moreover, expression of Smad1 and Smad5 was up-regulated in response to muscular injury. ALK2(R206H) with Smad1 or Smad5 induced osteoblastic differentiation that could be inhibited by Smad7 or dorsomorphin. Taken together, these findings suggest that the heterotopic bone formation in FOP may be induced by a constitutively activated BMP receptor signaling through Smad1 or Smad5. Gene transfer of Smad7 or inhibition of type I receptors with dorsomorphin may represent strategies for blocking the activity induced by ALK2(R206H) in FOP.


Journal of Biological Chemistry | 2007

Heparan Sulfate Proteoglycans (HSPGs) Modulate BMP2 Osteogenic Bioactivity in C2C12 Cells

Xiangyang Jiao; Paul C. Billings; Michael P. O'Connell; Frederick S. Kaplan; Eileen M. Shore; David L. Glaser

Cell surface heparan sulfate proteoglycans (HSPGs) have been implicated in bone morphogenetic protein (BMP)-mediated morphogenesis by regulating BMP activity and gradient formation. However, the direct role of HSPGs in BMP signaling is poorly understood. Here we show that HSPGs directly regulate BMP2-mediated transdifferentiation of C2C12 myoblasts into osteoblasts. HSPGs sequester BMP2 at the cell surface and mediate BMP2 internalization. Depletion of cell surface HSPGs by heparinase III treatment or decreased glycosaminoglycan chain sulfation with sodium chlorate enhances BMP2 morpho-genetic bioactivity. The addition of exogenous heparin, a widely used anticoagulant, reduced BMP2 signaling. Our results suggest that cell surface HSPGs mediate BMP2 internalization and modulate BMP2 osteogenic activity.


Journal of Bone and Joint Surgery, American Volume | 2003

In Vivo Somatic Cell Gene Transfer of an Engineered Noggin Mutein Prevents BMP4-Induced Heterotopic Ossification

David L. Glaser; Aris N. Economides; Lili Wang; Xia Liu; Robert D. Kimble; James P. Fandl; James M. Wilson; Neil Stahl; Frederick S. Kaplan; Eileen M. Shore

BACKGROUND The formation of the skeleton requires inductive signals that are balanced with their antagonists in a highly regulated negative feedback system. Inappropriate or excessive expression of BMPs (bone morphogenetic proteins) or their antagonists results in genetic disorders affecting the skeleton, such as fibrodysplasia ossificans progressiva. BMP signaling mediated through binding to its receptors is a critical step in the induction of abnormal ossification. Therefore, we hypothesized that engineering more effective inhibitors of this BMP-signaling process may lead to the development of therapies for such conditions. METHODS BMP4-induced heterotopic ossification was used as a model for testing the ability of the BMP antagonist Noggin to block de novo bone formation, either by local or systemic delivery. Since Noggin naturally acts locally, a Noggin mutein, hNOGDeltaB2, was engineered and was shown to circulate systemically, and its ability to block heterotopic ossification was tested in a mouse model with use of adenovirus-mediated somatic cell gene transfer. RESULTS A mouse model of BMP4-induced heterotopic ossification was developed. Local delivery of wild-type NOG inhibited heterotopic ossification, but systemic administration was ineffective. In contrast, systemic delivery of the adenovirus encoding hNOGDeltaB2 resulted in systemic levels that persisted for more than two weeks and were sufficient to block BMP4-induced heterotopic ossification. CONCLUSIONS BMP4-induced heterotopic ossification can be prevented in vivo either by local delivery of wild-type Noggin or after somatic cell gene transfer of a Noggin mutein, hNOGDeltaB2. Furthermore, the data in the present study provide proof of concept that a naturally occurring factor can be engineered for systemic delivery toward a desirable pharmacological outcome. CLINICAL RELEVANCE Blocking bone formation is clinically relevant to disorders of heterotopic ossification in humans, such as fibrodysplasia ossificans progressiva. Furthermore, development of BMP antagonists as therapeutic agents may provide modalities for the treatment of other pathologic conditions that arise from aberrant expression of BMPs and/or from a lack of their antagonists.


Nature Reviews Rheumatology | 2010

Inherited human diseases of heterotopic bone formation.

Eileen M. Shore; Frederick S. Kaplan

Human disorders of hereditary and nonhereditary heterotopic ossification are conditions in which osteogenesis occurs outside of the skeleton, within soft tissues of the body. The resulting extraskeletal bone is normal. The aberration lies within the mechanisms that regulate cell-fate determination, directing the inappropriate formation of cartilage or bone, or both, in tissues such as skeletal muscle and adipose tissue. Specific gene mutations have been identified in two rare inherited disorders that are clinically characterized by extensive and progressive extraskeletal bone formation—fibrodysplasia ossificans progressiva and progressive osseous heteroplasia. In fibrodysplasia ossificans progressiva, activating mutations in activin receptor type-1, a bone morphogenetic protein type I receptor, induce heterotopic endochondral ossification, which results in the development of a functional bone organ system that includes skeletal-like bone and bone marrow. In progressive osseous heteroplasia, the heterotopic ossification leads to the formation of mainly intramembranous bone tissue in response to inactivating mutations in the GNAS gene. Patients with these diseases variably show malformation of normal skeletal elements, identifying the causative genes and their associated signaling pathways as key mediators of skeletal development in addition to regulating cell-fate decisions by adult stem cells.

Collaboration


Dive into the Eileen M. Shore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meiqi Xu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David L. Glaser

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michael Zasloff

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Francis H. Gannon

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul C. Billings

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Vitali Y. Lounev

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

George J. Feldman

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge