Einar Jebens
National Institute of Occupational Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Einar Jebens.
European Journal of Applied Physiology | 2001
Jon Ingulf Medbø; Einar Jebens; Harald Vikne; Per Egil Refsnes; Petter Gramvik
Abstract This study examined how strenuous strength training affected the Na-K pump concentration in the knee extensor muscle of well-trained men and whether leg muscle strength and endurance was related to the pump concentration. First, the pump concentration, taken as 3H-ouabain binding, was measured in top alpine skiers since strength training is important to them. Second, well-trained subjects carried out strenuous eccentric resistance training either 1, 2, or 3 times · week−1 for 3 months. The Na-K pump concentration, the maximal muscle strength in a full squat lift (one repetition maximum, 1 RM), and the muscle endurance, taken as the number of full squat lifts of a mass of 70% of the 1 RM load, were measured before and after the training period. The mean pump concentration of the alpine skiers was 425 (SEM 11) nmol · kg−1 wet muscle mass. The subjects in part two increased their maximal strength in a dose-dependent manner. The muscle endurance increased for all subjects but independently of the training programme. From a mean starting value of 356 (SEM 6) nmol · kg−1 the mean Na-K pump concentration increased by 54 (SEM 15) nmol · kg−1 (+15%, P < 0.001) when the results for all subjects were pooled. The effect was larger for those who had trained twice a week than for those who had trained only once a week (P=0.025), suggesting that the effect of strength training depended on the amount of training carried out. The muscle strength and endurance were not related to the pump concentration, suggesting that the pumping power of this enzyme did not limit the performance during heavy lifting. However, the individual improvements in the endurance test during the training period correlated with the individual changes in the pump concentration (rSpearman=0.5; P=0.01) which could mean that a common factor both increases the pump concentration and makes the muscles more adapted to repeated heavy lifting.
Biochimica et Biophysica Acta | 1999
Jørgen Jensen; Rune Aslesen; Einar Jebens; Anders Skrondal
The effect of glycogen content on the activation of glycogen phosphorylase during adrenaline stimulation was investigated in soleus muscles from Wistar rats. Furthermore, adrenergic activation of glycogen phosphorylase in the slow-twitch oxidative soleus muscle was compared to the fast-twitch glycolytic epitrochlearis muscle. The glycogen content was 96.4 +/- 4.4 mmol (kg dw)(-1) in soleus muscles. Three hours of incubation with 10 mU/ml of insulin (and 5.5 mM glucose) increased the glycogen content to 182.2+/-5.9 mmol (kg dw)(-1) which is similar to that of epitrochlearis muscles (175.7+/-6.9 mmol (kg dw)(-1)). Total phosphorylase activity in soleus was independent of glycogen content. Adrenaline (10(-6) M) transformed about 20% and 35% (P < 0.01) of glycogen phosphorylase to the a form in soleus with normal and high glycogen content, respectively. In epitrochlearis, adrenaline stimulation transformed about 80% of glycogen phosphorylase to the a form. Glycogen synthase activation was reduced to low level in soleus muscles with both normal and high glycogen content. In conclusion, adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscles with increased glycogen content. Glycogen phosphorylase activation during adrenaline stimulation was much higher in epitrochlearis than in soleus muscles with a similar content of glycogen.
Pflügers Archiv: European Journal of Physiology | 2008
Jørgen Jensen; Line M. Grønning-Wang; Einar Jebens; Jonathan P. Whitehead; Robert Zorec; Peter R. Shepherd
We have previously shown in the rat slow-twitch soleus muscle that adrenaline greatly potentiates insulin-stimulated protein kinase B (PKB) phosphorylation without having an effect alone. However, insulin signalling capacity through the PKB pathway is higher in soleus than in fast-twitch muscles, whereas adrenaline activates phosphorylase more strongly in epitrochlearis. Therefore, the aim of the present study was to investigate the interaction between adrenaline and insulin signalling in the fast-twitch epitrochlearis muscle. Insulin increased insulin receptor substrate-1 (IRS-1)-associated phosphoinositide (PI) 3-kinase activity threefold, and adrenaline did not influence basal or insulin-stimulated PI 3-kinase activity. Insulin but not adrenaline increased PKB activity and phosphorylation of Ser473 and Thr308. It is interesting to note that adrenaline potentiated insulin-stimulated PKB activity and PKB Ser473 and Thr308 phosphorylation. These effects were mimicked by dibutyryl-cyclic adenosine monophosphate (db-cAMP). Adrenaline and db-cAMP increased glycogen synthase kinase (GSK)-3β Ser9 phosphorylation independently of PKB activation and enhanced insulin-stimulated GSK-3β Ser9 phosphorylation. Although adrenaline increased GSK-3 phosphorylation (inhibiting activity), phosphorylation of its target sites on glycogen synthase was increased, and adrenaline blocked insulin-stimulated glycogen synthase dephosphorylation of Ser641 and Ser645,649,653,657, glycogen synthase activation and glycogen synthesis. Insulin-stimulated glucose transport was not influenced by adrenaline despite the increased PKB activation. In conclusion, as in the slow-twitch soleus muscle, adrenaline potentiates insulin-stimulated PKB activation in the fast-twitch glycolytic epitrochlearis muscle without increasing IRS-1-associated PI 3-kinase activity. Furthermore, adrenaline induces phosphorylation of a pool of GSK-3 that is not involved in the regulation of glycogen metabolism. These results indicate that the combination of adrenaline and insulin may activate novel signalling molecules rather than just summing up their effects on linear pathways.
European Journal of Applied Physiology | 1995
Einar Jebens; H. Steen; T. O. Fjeld; E. Bye; Ole M. Sejersted
The K+ balance and muscle activity seem to interact in a complex way with regard to regulating the muscle density of Na+-K+ pumps. The effect of immobilization was examined in ten sheep that had low muscle K+ content. Three additional sheep served as untreated controls. After being brought from pasture to sheep stalls one hindlimb was immobilized in a plaster splint for 9 weeks, and in five of the animals remobilization was carried out for a further 9 weeks. The weight bearing of the leg in plaster was recorded by a force plate. Open muscle biopsies from the vastus lateralis muscle were obtained before the study, after 9 weeks of immobilization, and after another 9 weeks of remobilization. The Na+-K+ pump density was measured as [3H]-ouabain binding to intact tissue, and citrate synthase activity was measured in tissue homogenate. The tissue content of K+ was measured in fat-free dried tissue. Muscle K+ content increased linearly by almost 70% through the 18-week period independent of intervention. Immobilization reduced thigh circumference by 8% (P < 0.05) . A slight decrease in the area of type I fibres at 9 weeks and a slight increase at 18-weeks was found. The [3H]-ouabain binding was reduced by 39% and 22% in the immobilized and control legs, respectively, whereas citrate synthase activity was reduced by about 30% in both legs after 9 weeks of immobilization. During remobilization both the [3H]-ouabain binding and the citrate synthase activity increased to the same level as in the control animals. The plaster cast significantly reduced mass bearing of the immobilized leg, and a corresponding reduction in muscle activity must be assumed to have occurred in both legs as judged from citrate synthase activity. We concluded from this study that the reduction in the [3H]-ouabain binding during immobilization independent of an increase in muscle K+ content points to muscle activity as a strong stimulus for control of Na+-K+ bump density.
Work-a Journal of Prevention Assessment & Rehabilitation | 2014
Einar Jebens; Jon Ingulf Medbø; Oddvar Knutsen; Asgeir Mamen; Kaj Bo Veiersted
BACKGROUND Early retirement is an increasing problem in the construction industry. There is limited information about causes leading employees to leave working life early. We have compared construction workers present situation with their perception of future demands at work to avoid early retirement. METHODS All 87 employees in a medium-sized Norwegian construction company participated in the study. All were men and answered questionnaires on health and pain, work ability, mechanical exposure, psychosocial conditions, and demands regarding future working conditions. RESULTS Most workers showed good work ability, irrespective of age. Many reported high levels of mechanical exposure at work. The level of musculoskeletal pain was higher in the middle-aged (30-50 year old) age groups and seniors aged over 50 years than among the youngest workers less than 30 years of age. All workers reported that good health was important for continued working. Most workers stated that future work must not be too physically demanding. Many workers reported relatively low job satisfaction; consequently an interesting job was rated as important for continuing work. Good social conditions were a high priority. CONCLUSIONS According to the examined construction workers, good health and reduced levels of mechanical exposure at work are essential to avoid early retirement.
American Journal of Physiology-endocrinology and Metabolism | 2006
Jørgen Jensen; Einar Jebens; Erlend O. Brennesvik; Jérôme Ruzzin; Maria A. Soos; Ellen M. L. Engebretsen; Stephen O'Rahilly; Jonathan P. Whitehead
Cellular Signalling | 2005
Erlend O. Brennesvik; Chariklia Ktori; Jérôme Ruzzin; Einar Jebens; Peter R. Shepherd; Jørgen Jensen
Acta Physiologica Scandinavica | 2005
Jørgen Jensen; Jérôme Ruzzin; Einar Jebens; Erlend O. Brennesvik; Stein Knardahl
Pflügers Archiv: European Journal of Physiology | 2002
Jørgen Jensen; Erlend O. Brennesvik; Linda H. Bergersen; Harald Oseland; Einar Jebens; Odd Brørs
Pharmacology & Toxicology | 1999
Arne T. Høstmark; Einar Lystad; Einar Jebens; Jan Skramstad; Paul Frøyen