Einar O. Fridjonsson
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Einar O. Fridjonsson.
Journal of Magnetic Resonance | 2012
I.A. Lingwood; Thusara C. Chandrasekera; J. Kolz; Einar O. Fridjonsson; Michael L. Johns
Pulsed Field Gradient (PFG) measurements are commonly used to determine emulsion droplet size distributions based on restricted self-diffusion within the emulsion droplets. Such measurement capability is readily available on commercial NMR bench-top apparatus. A significant limitation is the requirement to selectively detect signal from the liquid phase within the emulsion droplets; this is currently achieved using either relaxation or self-diffusion contrast. Here we demonstrate the use of a 1.1 T bench-top NMR magnet, which when coupled with an rf micro-coil, is able to provide sufficient chemical shift resolution such that unambiguous signal selection is achieved from the dispersed droplet phase. We also improve the accuracy of the numerical inversion process required to produce the emulsion droplet size distribution, by employing the Block Gradient Pulse (bgp) method, which partially relaxes the assumptions of a Gaussian phase distribution or infinitely short gradient pulse application inherent in current application. The techniques are successfully applied to size 3 different emulsions.
Langmuir | 2015
Agnes Haber; Masoumeh Akhfash; Charles K. Loh; Zachary M. Aman; Einar O. Fridjonsson; Eric F. May; Michael L. Johns
Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shells morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.
Journal of Contaminant Hydrology | 2011
Einar O. Fridjonsson; Joseph D. Seymour; Logan N. Schultz; Robin Gerlach; Alfred B. Cunningham; Sarah L. Codd
Noninvasive measurements of hydrodynamic dispersion by nuclear magnetic resonance (NMR) are made in a model porous system before and after a biologically mediated precipitation reaction. Traditional magnetic resonance imaging (MRI) was unable to detect the small scale changes in pore structure visualized during light microscopy analysis after destructive sampling of the porous medium. However, pulse gradient spin echo nuclear magnetic resonance (PGSE NMR) measurements clearly indicated a change in hydrodynamics including increased pore scale mixing. These changes were detected through time-dependent measurement of the propagator by PGSE NMR. The dynamics indicate an increased pore scale mixing which alters the preasymptotic approach to asymptotic Gaussian dynamics governed by the advection diffusion equation. The methods described here can be used in the future to directly measure the transport of solutes in biomineral-affected porous media and contribute towards reactive transport models, which take into account the influence of pore scale changes in hydrodynamics.
Desalination and Water Treatment | 2016
R. Valladares Linares; Luca Fortunato; Nadia Farhat; Sz.S. Bucs; M.J. Staal; Einar O. Fridjonsson; Michael L. Johns; J.S. Vrouwenvelder; TorOve Leiknes
AbstractMembrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel in situ biofouling characterization techniques were assessed: (i) optical coherence tomography (OCT), (ii) planar optodes, and (iii) nuclear magnetic resonance (NMR). The first two techniques were assessed using a biofilm grown on the surface of nanofiltration (NF) membranes using a transparent membrane fouling simulator that accurately simulates spiral wound modules, modified for in situ biofilm imaging. For the NMR study, a spiral wound reverse osmosis membrane module was used. Results show that these techniques can provide information to reconstruct the biofilm accurately, either with 2-D (OCT, planar optodes and NMR), or 3-D (OCT and NMR) scans. These non-destructive tools can elucidate the interaction of hydrodynamic...
Physics of Fluids | 2009
Jennifer R. Brown; Einar O. Fridjonsson; Joseph D. Seymour; Sarah L. Codd
The shear-induced migration of colloidal particles in capillary flow has been investigated using nuclear magnetic resonance. Nuclear magnetic resonance methods have the ability to measure spatially resolved velocity and probability distributions of displacement within a multiphase colloidal system. For a suspension of ∼2.49 μm Brownian model hard spheres under shear flow in a 1 mm diameter glass capillary, particle migration inward to the capillary center was found using spectrally resolved pulsed gradient spin echo techniques for a range of volume fractions. Particle migration was detected even in the dilute regime, down to ϕ<0.04. While particle migration has been measured and is expected in concentrated and noncolloidal suspensions, it has only recently been unequivocally detected in dilute Brownian suspensions.
Journal of Magnetic Resonance | 2012
Einar O. Fridjonsson; Louise S. Flux; Michael L. Johns
The use of the Earths magnetic field (EF) to conduct nuclear magnetic resonance (NMR) experiments has a long history with a growing list of applications (e.g. ground water detection, diffusion measurements of Antarctic sea ice). In this paper we explore whether EFNMR can be used to accurately and practically measure the mean droplet size () of water-in-oil emulsions (paraffin and crude oil). We use both pulsed field gradient (PFG) measurements of restricted self-diffusion and T₂ relaxometry, as appropriate. T₂ relaxometry allows the extension of droplet sizing ability below the limits set by the available magnetic field gradient strength of the EFNMR apparatus. A commercially available bench-top NMR spectrometer is used to verify the results obtained using the EFNMR instrument, with good agreement within experimental error, seen between the two instruments. These results open the potential for further investigation of the application of EFNMR for emulsion droplet sizing.
Journal of Colloid and Interface Science | 2010
Tyler R. Brosten; Einar O. Fridjonsson; Sarah L. Codd; Joseph D. Seymour
The transport of model hard sphere core shell colloidal particles under flow through a random open-cell solid polymer foam is studied using nuclear magnetic resonance. Unique data on the scale dependent dynamics of the colloidal particle and suspending fluid phase are obtained using spectral chemical resolution. The dynamics of each phase are shown to differ from one another dependent on the displacement length and time scale of the measurement. The data is interpreted in the context of classic hydrodynamic dispersion theory and mechanisms of transport for each phase.
Journal of Magnetic Resonance | 2014
Einar O. Fridjonsson; Paul L. Stanwix; Michael L. Johns
In this paper we demonstrate the use of Earths field NMR (EF NMR) combined with a pre-polarising permanent magnet for measuring fast fluid velocities. This time of flight measurement protocol has a considerable history in the literature; here we demonstrate that it is quantitative when employing the Earths magnetic field for signal detection. NMR signal intensities are measured as a function of flow rate (0-1m/s) and separation distance between the permanent magnet and the EF NMR signal detection. These data are quantitatively described by a flow model, ultimately featuring no free parameters, that accounts for NMR signal modulation due to residence time inside the pre-polarising magnet, between the pre-polarising magnet and the detection RF coil and inside the detection coil respectively. The methodology is subsequently demonstrated with a metallic pipe in the pre-polarising region.
Journal of Colloid and Interface Science | 2016
Nicholas N.A. Ling; Agnes Haber; Einar O. Fridjonsson; Eric F. May; Michael L. Johns
HYPOTHESIS Shear-induced droplet diffusion of flowing hard spheres is relatively well understood and has been extensively studied both experimentally and via simulations. The same however is not true of soft spheres, specifically emulsions, despite their broad and extensive industrial relevance. Here we seek to demonstrate that appropriate NMR techniques can be used to quantitatively measure shear-induced droplet diffusion. Limited literature indicates that dilute dispersions of soft spheres experience significantly larger shear-induced droplet diffusion relative to otherwise equivalent hard sphere suspensions. Here we explore whether this effect persists to high concentrations. EXPERIMENTS Nuclear Magnetic Resonance (NMR) pulsed field gradient (PFG) techniques were used to measure shear-induced droplet diffusion for capillary flow of various water-in-oil (w/o) emulsions in a direction transverse to flow. Two adaptations were necessary - the acquired signal was analyzed so as to quantitatively distinguish restricted molecular diffusion within the emulsion droplets from shear-induced diffusion of the droplets, whilst flow-compensated PFG pulse sequences were shown to be necessary to account for any erroneous effects due to flow. A range of w/o emulsions were considered to enable measurement of shear-induced droplet diffusion as a function of both water content and mean shear rate. The surfactant content of these emulsions was adjusted such that they presented similar (stationary) emulsion droplet size distributions (DSD) which were also measured using NMR PFG techniques. FINDINGS The droplet shear-induced diffusion data for the emulsion systems were compared against relevant results from the literature. Consistent with predictions for dilute systems, significantly greater droplet diffusion was measured relative to hard sphere suspensions at all concentrations, and a quadratic dependence was found between droplet diffusion and mean droplet size. For more concentrated emulsions, a peak in the droplet diffusion-concentration relationship was observed for the first time in emulsions, prior to the onset of emulsion inversion.
Transport in Porous Media | 2014
Einar O. Fridjonsson; Sarah L. Codd; Joseph D. Seymour
Colloidal particulate deposition affects the performance of industrial equipment, reverse osmosis membranes and sub-surface contaminant transport. Nuclear magnetic resonance (NMR) techniques, i.e. diffusion, diffraction and velocity imaging, are used to study the effect deposited colloidal particulate have on the fluid dynamics of water inside a model porous medium. Specially prepared oil-filled hard-sphere particles allow monitoring of particulate accumulation via NMR spectroscopy. Evidence of preferential spatial deposition is observed after the initial colloidal particulate deposition. Loss of spatial homogeneity is observed through NMR diffraction, while observations of the probability distributions of displacement (propagators) indicate the formation of back-bone type flow. This paper presents unique dynamic NMR data for the non-invasive non-destructive investigation of fluid transport in opaque porous media experiencing colloidal deposition.