Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Einly Lim is active.

Publication


Featured researches published by Einly Lim.


IEEE Transactions on Biomedical Engineering | 2010

Parameter-Optimized Model of Cardiovascular–Rotary Blood Pump Interactions

Einly Lim; Socrates Dokos; Shaun L. Cloherty; Robert F. Salamonsen; David Glen Mason; John A. Reizes; Nigel H. Lovell

A lumped parameter model of human cardiovascular-implantable rotary blood pump (iRBP) interaction has been developed based on experimental data recorded in two healthy pigs with the iRBP in situ. The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, as well as the iRBP. A subset of parameters was optimized in a least squares sense to faithfully reproduce the experimental measurements (pressures, flows and pump variables). Our fitted model compares favorably with our experimental measurements at a range of pump operating points. Furthermore, we have also suggested the importance of various model features, such as the curvilinearity of the end systolic pressure-volume relationship, the Starling resistance, the suction resistance, the effect of respiration, as well as the influence of the pump inflow and outflow cannulae. Alterations of model parameters were done to investigate the circulatory response to rotary blood pump assistance under heart failure conditions. The present model provides a valuable tool for experiment designs, as well as a platform to aid in the development and evaluation of robust physiological pump control algorithms.


Artificial Organs | 2012

Theoretical foundations of a Starling-like controller for rotary blood pumps

Robert F. Salamonsen; Einly Lim; Nicholas Gaddum; Abdul-Hakeem H. Alomari; Shaun D. Gregory; Michael C. Stevens; David Glen Mason; John F. Fraser; Daniel Timms; Mohan Karunanithi; Nigel H. Lovell

A clinically intuitive physiologic controller is desired to improve the interaction between implantable rotary blood pumps and the cardiovascular system. This controller should restore the Starling mechanism of the heart, thus preventing overpumping and underpumping scenarios plaguing their implementation. A linear Starling-like controller for pump flow which emulated the response of the natural left ventricle (LV) to changes in preload was then derived using pump flow pulsatility as the feedback variable. The controller could also adapt the control line gradient to accommodate longer-term changes in cardiovascular parameters, most importantly LV contractility which caused flow pulsatility to move outside predefined limits. To justify the choice of flow pulsatility, four different pulsatility measures (pump flow, speed, current, and pump head pressure) were investigated as possible surrogates for LV stroke work. Simulations using a validated numerical model were used to examine the relationships between LV stroke work and these measures. All were approximately linear (r(2) (mean ± SD) = 0.989 ± 0.013, n = 30) between the limits of ventricular suction and opening of the aortic valve. After aortic valve opening, the four measures differed greatly in sensitivity to further increases in LV stroke work. Pump flow pulsatility showed more correspondence with changes in LV stroke work before and after opening of the aortic valve and was least affected by changes in the LV and right ventricular (RV) contractility, blood volume, peripheral vascular resistance, and heart rate. The system (flow pulsatility) response to primary changes in pump flow was then demonstrated to be appropriate for stable control of the circulation. As medical practitioners have an instinctive understanding of the Starling curve, which is central to the synchronization of LV and RV outputs, the intuitiveness of the proposed Starling-like controller will promote acceptance and enable rational integration into patterns of hemodynamic management.


Physiological Measurement | 2009

Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients.

Abdul-Hakeem H. Alomari; Andrey V. Savkin; Dean M. Karantonis; Einly Lim; Nigel H. Lovell

We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R2=0.982) and a mean absolute error (e) of 0.323 L min(-1), while for head, R2=0.933 and e=7.682 mmHg were obtained. R2=0.849 and e=0.584 L min(-1) were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N=6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands.


Artificial Organs | 2010

Noninvasive Activity-based Control of an Implantable Rotary Blood Pump: Comparative Software Simulation Study

Dean M. Karantonis; Einly Lim; David Glen Mason; Robert F. Salamonsen; Peter J. Ayre; Nigel H. Lovell

A control algorithm for an implantable centrifugal rotary blood pump (RBP) based on a noninvasive indicator of the implant recipients activity level has been proposed and evaluated in a software simulation environment. An activity level index (ALI)-derived from a noninvasive estimate of heart rate and the output of a triaxial accelerometer-forms the noninvasive indicator of metabolic energy expenditure. Pump speed is then varied linearly according to the ALI within a defined range. This ALI-based control module operates within a hierarchical multiobjective framework, which imposes several constraints on the operating region, such as minimum flow and minimum speed amplitude thresholds. Three class IV heart failure (HF) cases of varying severity were simulated under rest and exercise conditions, and a comparison with other popular RBP control strategies was performed. Pump flow increases of 2.54, 1.94, and 1.15 L/min were achieved for the three HF cases, from rest to exercise. Compared with constant speed control, this represents a relative flow change of 30.3, 19.8, and -15.4%, respectively. Simulations of the proposed control algorithm exhibited the effective intervention of each constraint, resulting in an improved flow response and the maintenance of a safe operating condition, compared with other control modes.


Artificial Organs | 2014

A sliding mode-based starling-like controller for implantable rotary blood pumps.

Mohsen A. Bakouri; Robert F. Salamonsen; Andrey V. Savkin; Abdul-Hakeem H. Alomari; Einly Lim; Nigel H. Lovell

Clinically adequate implementation of physiological control of a rotary left ventricular assist device requires a sophisticated technique such as the recently proposed method based on the Frank-Starling mechanism. In this mechanism, the stroke volume of the heart increases in response to an increase in the volume of blood filling the left ventricle at the end of diastole. To emulate this process, changes in pump speed need to automatically regulate pump flow to ensure that the combined output of the left ventricle and pump match the output of the right ventricle across changing cardiovascular states. In this approach, we exploit the linear relationship between estimated mean pump flow (Q ̅ est) and pump flow pulsatility (PIQp) in a tracking control algorithm based on sliding mode control. The immediate response of the controller was assessed using a lumped parameter model of the cardiovascular system (CVS) and pump from which could be extracted both Q ̅ est and PIQp. Two different perturbations from the resting state in the presence of left ventricular failure were tested. The first was blood loss requiring a reduction in pump flow to match the reduced output from the right ventricle and to avoid the complication of ventricular suction. The second was exercise, requiring an increase in pump flow. The sliding mode controller induced the required changes in Qp within approximately five heart beats in the blood loss simulation and eight heart beats in the exercise simulation without clinically significant transients or steady-state errors.


Artificial Organs | 2011

Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices.

Daniel Timms; Einar Gude; Nicholas Gaddum; Einly Lim; Nicholas Greatrex; Kai Wong; Ulrich Steinseifer; Nigel H. Lovell; John F. Fraser; Arnt E. Fiane

The absence of an effective, easily implantable right ventricular assist device (RVAD) significantly diminishes long-term treatment options for patients with biventricular heart failure. The implantation of a second rotary left ventricular assist device (LVAD) for right heart support is therefore being considered; however, this approach exhibits technical challenges when adapting current devices to produce the lower pressures required of the pulmonary circulation. Hemodynamic adaptation may be achieved by either reducing the rotational speed of the right pump impeller or reducing the diameter of the right outflow cannula by the placement of a restricting band; however, the optimal value and influence of changes to each parameter are not well understood. Hemodynamics were therefore investigated using different banding diameters of the right outflow cannula (3-6.5 mm) and pump speeds (500-4500 rpm), using two identical rotary blood pumps coupled to a pulsatile mock circulation loop. Reducing the speed of the right pump from 4900 rpm (for left ventricle support) to 3500 rpm, or banding the Ø10 mm (area 78.5 mm²) right outflow graft to Ø5.4 mm (22.9 mm²) produced suitable hemodynamics. Pulmonary pressures were most sensitive to banding diameters, especially when RVAD flow exceeded LVAD flow. This occurred between Ø5.3 and Ø6.5 mm (22.05-38.5 mm²) and speeds between 3200 and 4400 rpm, with the flow imbalance potentially leading to pulmonary congestion. Total flow was not affected by banding diameters and speeds below this range, and only increased slightly at higher values. Both right outflow banding or right pump speed reduction were found to be effective techniques to allow a rotary LVAD to be used directly for right heart support. However, the observed sensitivity to diameter and speed indicate that challenges may be presented when setting appropriate values for each patient, and control over these parameters is desirable.


Theoretical Biology and Medical Modelling | 2013

Numerical investigation of the effect of cannula placement on thrombosis

ChiWei Ong; Socrates Dokos; BeeTing Chan; Einly Lim; Amr Al Abed; Noor Azuan Abu Osman; Suhaini Kadiman; Nigel H. Lovell

Despite the rapid advancement of left ventricular assist devices (LVADs), adverse events leading to deaths have been frequently reported in patients implanted with LVADs, including bleeding, infection, thromboembolism, neurological dysfunction and hemolysis.Cannulation forms an important component with regards to thrombus formation in assisted patients by varying the intraventricular flow distribution in the left ventricle (LV). To investigate the correlation between LVAD cannula placement and potential for thrombus formation, detailed analysis of the intraventricular flow field was carried out in the present study using a two way fluid structure interaction (FSI), axisymmetric model of a passive LV incorporating an inflow cannula. Three different cannula placements were simulated, with device insertion near the LV apex, penetrating one-fourth and mid-way into the LV long axis. The risk of thrombus formation is assessed by analyzing the intraventricular vorticity distribution and its associated vortex intensity, amount of stagnation flow in the ventricle as well as the level of wall shear stress. Our results show that the one-fourth placement of the cannula into the LV achieves the best performance in reducing the risk of thrombus formation. Compared to cannula placement near the apex, higher vortex intensity is achieved at the one-fourth placement, thus increasing wash out of platelets at the ventricular wall. One-fourth LV penetration produced negligible stagnation flow region near the apical wall region, helping to reduce platelet deposition on the surface of the cannula and the ventricular wall.


IEEE Transactions on Biomedical Engineering | 2008

Noninvasive Average Flow and Differential Pressure Estimation for an Implantable Rotary Blood Pump Using Dimensional Analysis

Einly Lim; Dean M. Karantonis; John A. Reizes; Shaun L. Cloherty; David Glen Mason; Nigel H. Lovell

Accurate noninvasive average flow and differential pressure estimation of implantable rotary blood pumps (IRBPs) is an important practical element for their physiological control. While most attempts at developing flow and differential pressure estimate models have involved purely empirical techniques, dimensional analysis utilizes theoretical principles of fluid mechanics that provides valuable insights into parameter relationships. Based on data obtained from a steady flow mock loop under a wide range of pump operating points and fluid viscosities, flow and differential pressure estimate models were thus obtained using dimensional analysis. The algorithm was then validated using data from two other VentrAssist IRBPs. Linear correlations between estimated and measured pump flow over a flow range of 0.5 to 8.0 L/min resulted in a slope of 0.98 (R 2 = 0.9848). The average flow error was 0.20 plusmn 0.14 L/min (mean plusmn standard deviation) and the average percentage error was 5.79%. Similarly, linear correlations between estimated and measured pump differential pressure resulted in a slope of 1.027 (R 2 = 0.997) over a pressure range of 60 to 180 mmHg. The average differential pressure error was 1.84 plusmn 1.54 mmHg and the average percentage error was 1.51%.


Artificial Organs | 2012

Numerical Optimization Studies of Cardiovascular-Rotary Blood Pump Interaction

Einly Lim; Socrates Dokos; Robert F. Salamonsen; Franklin Rosenfeldt; Peter J. Ayre; Nigel H. Lovell

A heart-pump interaction model has been developed based on animal experimental measurements obtained with a rotary blood pump in situ. Five canine experiments were performed to investigate the interaction between the cardiovascular system and the implantable rotary blood pump over a wide range of operating conditions, including variations in cardiac contractility and heart rate, systemic vascular resistance (SVR), and total blood volume (V(total) ). It was observed in our experiments that SVR decreased with increasing mean pump speed under the healthy condition, but was relatively constant during the speed ramp study under reduced cardiac contractility conditions. Furthermore, we also found a significant increase in pulmonary vascular resistance with increasing mean pump speed and decreasing total blood volume, despite a relatively constant SVR. Least squares parameter estimation methods were utilized to fit a subset of model parameters in order to achieve better agreement with the experimental data and to evaluate the robustness and validity of the model under various operating conditions. The fitted model produced reasonable agreement with the experimental measurements, both in terms of mean values and steady-state waveforms. In addition, all the optimized parameters were within physiological limits.


PLOS ONE | 2015

Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation

Mahdi Mansouri; Robert F. Salamonsen; Einly Lim; Rini Akmeliawati; Nigel H. Lovell

In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach.

Collaboration


Dive into the Einly Lim's collaboration.

Top Co-Authors

Avatar

Nigel H. Lovell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey V. Savkin

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Socrates Dokos

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Daniel Timms

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge