Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eitaro Nakashima is active.

Publication


Featured researches published by Eitaro Nakashima.


Nature Genetics | 2012

Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians.

Yoon Shin Cho; Chien-Hsiun Chen; Cheng Hu; Jirong Long; Rick Twee-Hee Ong; Xueling Sim; Fumihiko Takeuchi; Ying Wu; Min Jin Go; Toshimasa Yamauchi; Yi-Cheng Chang; Soo Heon Kwak; Ronald C.W. Ma; Ken Yamamoto; Linda S. Adair; Tin Aung; Qiuyin Cai; Li Ching Chang; Yuan-Tsong Chen; Yu-Tang Gao; Frank B. Hu; Hyung Lae Kim; Sangsoo Kim; Young-Jin Kim; Jeannette Lee; Nanette R. Lee; Yun Li; Jianjun Liu; Wei Lu; Jiro Nakamura

We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, which is involved in pancreatic beta cell development and insulin gene expression, is known for its association with fasting glucose levels. The evidence of an association with T2D for PEPD and HNF4A has been shown in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D.


Nature Genetics | 2011

Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in East Asians

Norihiro Kato; Fumihiko Takeuchi; Yasuharu Tabara; Tanika N. Kelly; Min Jin Go; Xueling Sim; Wan Ting Tay; Chien-Hsiun Chen; Yi Zhang; Ken Yamamoto; Tomohiro Katsuya; Mitsuhiro Yokota; Young-Jin Kim; Rick Twee-Hee Ong; Dongfeng Gu; Li Ching Chang; Yoshihiro Kokubo; Wei Huang; Keizo Ohnaka; Yukio Yamori; Eitaro Nakashima; Jong-Young Lee; Mark Seielstad; Masato Isono; James E. Hixson; Yuan-Tsong Chen; Tetsuro Miki; Xueya Zhou; Takao Sugiyama; Jae Pil Jeon

We conducted a meta-analysis of genome-wide association studies of systolic (SBP) and diastolic (DBP) blood pressure in 19,608 subjects of east Asian ancestry from the AGEN-BP consortium followed up with de novo genotyping (n = 10,518) and further replication (n = 20,247) in east Asian samples. We identified genome-wide significant (P < 5 × 10−8) associations with SBP or DBP, which included variants at four new loci (ST7L-CAPZA1, FIGN-GRB14, ENPEP and NPR3) and a newly discovered variant near TBX3. Among the five newly discovered variants, we obtained significant replication in the independent samples for all of these loci except NPR3. We also confirmed seven loci previously identified in populations of European descent. Moreover, at 12q24.13 near ALDH2, we observed strong association signals (P = 7.9 × 10−31 and P = 1.3 × 10−35 for SBP and DBP, respectively) with ethnic specificity. These findings provide new insights into blood pressure regulation and potential targets for intervention.


Diabetes | 2009

Confirmation of Multiple Risk Loci and Genetic Impacts by a Genome-Wide Association Study of Type 2 Diabetes in the Japanese Population

Fumihiko Takeuchi; Masakuni Serizawa; Ken Yamamoto; Tomomi Fujisawa; Eitaro Nakashima; Keizo Ohnaka; Hiroshi Ikegami; Takao Sugiyama; Tomohiro Katsuya; Makoto Miyagishi; Naoki Nakashima; Hajime Nawata; Jiro Nakamura; Suminori Kono; Ryoichi Takayanagi; Norihiro Kato

OBJECTIVE To identify novel type 2 diabetes gene variants and confirm previously identified ones, a three-staged genome-wide association study was performed in the Japanese population. RESEARCH DESIGN AND METHODS In the stage 1 scan, we genotyped 519 case and 503 control subjects with 482,625 single nucleotide polymorphism (SNP) markers; in the stage 2 panel comprising 1,110 case subjects and 1,014 control subjects, we assessed 1,456 SNPs (P < 0.0025, stage 1); additionally to direct genotyping, 964 healthy control subjects formed the in silico control panel. Along with genome-wide exploration, we aimed to replicate the disease association of 17 SNPs from 16 candidate loci previously identified in Europeans. The associated and/or replicated loci (23 SNPs; P < 7 × 10–5 for genome-wide exploration and P < 0.05 for replication) were examined in the stage 3 panel comprising 4,000 case subjects and 12,569 population-based samples, from which 4,889 nondiabetic control subjects were preselected. The 12,569 subjects were used for overall risk assessment in the general population. RESULTS Four loci—1 novel with suggestive evidence (PEPD on 19q13, P = 1.4 × 10–5) and three previously reported—were identified; the association of CDKAL1, CDKN2A/CDKN2B, and KCNQ1 were confirmed (P < 10–19). Moreover, significant associations were replicated in five other candidate loci: TCF7L2, IGF2BP2, SLC30A8, HHEX, and KCNJ11. There was substantial overlap of type 2 diabetes susceptibility genes between the two populations, whereas effect size and explained variance tended to be higher in the Japanese population. CONCLUSIONS The strength of association was more prominent in the Japanese population than in Europeans for more than half of the confirmed type 2 diabetes loci.


Diabetes | 2008

Transplantation of Bone Marrow-derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats.

Taiga Shibata; Keiko Naruse; Hideki Kamiya; Mika Kozakae; Masaki Kondo; Yutaka Yasuda; Nobuhisa Nakamura; Kimiko Ota; Takahiro Tosaki; Takashi Matsuki; Eitaro Nakashima; Yoji Hamada; Yutaka Oiso; Jiro Nakamura

OBJECTIVE—Mesenchymal stem cells (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neurosupportive effects. This study was conducted to investigate the effects of MSC transplantation on diabetic polyneuropathy (DPN) in rats. RESEARCH DESIGN AND METHODS—MSCs were isolated from bone marrow of adult rats and transplanted into hind limb skeletal muscles of rats with an 8-week duration of streptozotocin (STZ)-induced diabetes or age-matched normal rats by unilateral intramuscular injection. Four weeks after transplantation, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) productions in transplanted sites, current perception threshold, nerve conduction velocity (NCV), sciatic nerve blood flow (SNBF), capillary number–to–muscle fiber ratio in soleus muscles, and sural nerve morphometry were evaluated. RESULTS—VEGF and bFGF mRNA expression were significantly increased in MSC-injected thigh muscles of STZ-induced diabetic rats. Furthermore, colocalization of MSCs with VEGF and bFGF in the transplanted sites was confirmed. STZ-induced diabetic rats showed hypoalgesia, delayed NCV, decreased SNBF, and decreased capillary number–to–muscle fiber ratio in soleus muscles, which were all ameliorated by MSC transplantation. Sural nerve morphometry showed decreased axonal circularity in STZ-induced diabetic rats, which was normalized by MSC transplantation. CONCLUSIONS—These results suggest that MSC transplantation could have therapeutic effects on DPN through paracrine actions of growth factors secreted by MSCs.


European Journal of Human Genetics | 2012

Genome-wide association study of coronary artery disease in the Japanese.

Fumihiko Takeuchi; Mitsuhiro Yokota; Ken Yamamoto; Eitaro Nakashima; Tomohiro Katsuya; Hiroyuki Asano; Masato Isono; Takao Sugiyama; Akihiro Fujioka; Nobuhisa Awata; Keizo Ohnaka; Masahiro Nakatochi; Hidetoshi Kitajima; Hiromi Rakugi; Jiro Nakamura; Takayoshi Ohkubo; Yutaka Imai; Kazuaki Shimamoto; Yukio Yamori; Shuhei Yamaguchi; Shotai Kobayashi; Ryoichi Takayanagi; Toshio Ogihara; Norihiro Kato

A new understanding of the genetic basis of coronary artery disease (CAD) has recently emerged from genome-wide association (GWA) studies of common single-nucleotide polymorphisms (SNPs), thus far performed mostly in European-descent populations. To identify novel susceptibility gene variants for CAD and confirm those previously identified mostly in populations of European descent, a multistage GWA study was performed in the Japanese. In the discovery phase, we first genotyped 806 cases and 1337 controls with 451 382 SNP markers and subsequently assessed 34 selected SNPs with direct genotyping (541 additional cases) and in silico comparison (964 healthy controls). In the replication phase, involving 3052 cases and 6335 controls, 12 SNPs were tested; CAD association was replicated and/or verified for 4 (of 12) SNPs from 3 loci: near BRAP and ALDH2 on 12q24 (P=1.6 × 10−34), HLA-DQB1 on 6p21 (P=4.7 × 10−7), and CDKN2A/B on 9p21 (P=6.1 × 10−16). On 12q24, we identified the strongest association signal with the strength of association substantially pronounced for a subgroup of myocardial infarction cases (P=1.4 × 10−40). On 6p21, an HLA allele, DQB1*0604, could show one of the most prominent association signals in an ∼8-Mb interval that encompasses the LTA gene, where an association with myocardial infarction had been reported in another Japanese study. CAD association was also identified at CDKN2A/B, as previously reported in different populations of European descent and Asians. Thus, three loci confirmed in the Japanese GWA study highlight the likely presence of risk alleles with two types of genetic effects – population specific and common – on susceptibility to CAD.


Analytical and Bioanalytical Chemistry | 2012

Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy

Akiyoshi Hirayama; Eitaro Nakashima; Masahiro Sugimoto; Shinichi Akiyama; Waichi Sato; Shoichi Maruyama; Seiichi Matsuo; Masaru Tomita; Yukio Yuzawa; Tomoyoshi Soga

Capillary electrophoresis coupled with time-of-flight mass spectrometry was used to explore new serum biomarkers with high sensitivity and specificity for diabetic nephropathy (DN) diagnosis, through comprehensive analysis of serum metabolites with 78 diabetic patients. Multivariate analyses were used for identification of marker candidates and development of discriminative models. Of the 289 profiled metabolites, orthogonal partial least-squares discriminant analysis identified 19 metabolites that could distinguish between DN with macroalbuminuria and diabetic patients without albuminuria. These identified metabolites included creatinine, aspartic acid, γ-butyrobetaine, citrulline, symmetric dimethylarginine (SDMA), kynurenine, azelaic acid, and galactaric acid. Significant correlations between all these metabolites and urinary albumin-to-creatinine ratios (p < 0.009, Spearman’s rank test) were observed. When five metabolites (including γ-butyrobetaine, SDMA, azelaic acid and two unknowns) were selected from 19 metabolites and applied for multiple logistic regression model, AUC value for diagnosing DN was 0.927 using the whole dataset, and 0.880 in a cross-validation test. In addition, when four known metabolites (aspartic acid, SDMA, azelaic acid and galactaric acid) were applied, the resulting AUC was still high at 0.844 with the whole dataset and 0.792 with cross-validation. Combination of serum metabolomics with multivariate analyses enabled accurate discrimination of DN patients. The results suggest that capillary electrophoresis-mass spectrometry based metabolome analysis could be used for DN diagnosis.


Diabetologia | 2001

Glucose-induced hyperproliferation of cultured rat aortic smooth muscle cells through polyol pathway hyperactivity

Jiro Nakamura; Yasuhide Kasuya; Yoji Hamada; Eitaro Nakashima; Keiji Naruse; Yutaka Yasuda; Koichi Kato; Nigishi Hotta

Aims/hypothesis. The protein kinase C (PKC), platelet-derived growth factor (PDGF) and polyol pathway play important parts in the hyperproliferation of smooth muscle cells, a characteristic feature of diabetic macroangiopathy. The precise mechanism, however, remains unclear. This study investigated the relation between polyol pathway, protein kinase C and platelet-derived growth factor in the development of diabetic macroangiopathy. Methods. Smooth muscle cells were cultured with 5.5 or 20 mmol/l glucose with or without an aldose reductase inhibitor, epalrestat, or a PKC-β specific inhibitor, LY333 531. Protein kinase C activities, the expression of PKC-βII isoform and PDGF-β receptor protein, free cytosolic NAD+:NADH ratio, the contents of reduced glutathione, and proliferation activities were measured. Results. Smooth muscle cells cultured with 20 mmol/l glucose showed statistically significant increases in protein kinase C activities, the expression of PKC-βII isoform and PDGF-β receptor protein, and proliferation activities, compared with smooth muscle cells cultured with 5.5 mmol/l glucose. Although epalrestat and LY333 531 inhibited protein kinase C activation induced by glucose to the same degree, the effects of epalrestat on proliferation activities and expression of the PDGF-β receptor were more prominent than those of LY333 531. Epalrestat improved the glucose-induced decrease in free cytosolic NAD+:NADH ratio and reduced glutathione content, but LY333 531 did not. The increased expression of membranous PKC-βII isoform was normalized by epalrestat. Conclusion/interpretation. These observations suggest that polyol pathway hyperactivity contributes to the development of diabetic macroangiopathy through protein kinase C, PDGF-β receptor, and oxidative stress, and that an aldose reductase inhibitor has a therapeutic value for this complication. [Diabetologia (2001) 44: 480–487]


Diabetes Research and Clinical Practice | 2003

The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes

Kazuma Miwa; Jiro Nakamura; Yoji Hamada; Keiko Naruse; Eitaro Nakashima; Koichi Kato; Yasuhide Kasuya; Yutaka Yasuda; Hideki Kamiya; Nigishi Hotta

The pathogenesis of pericyte loss, an initial deficit in the early stage of diabetic retinopathy, remains unclear. Recent studies have suggested that polyol pathway hyperactivity and apoptosis may be involved in pericyte loss. The mechanisms of the glucose-induced apoptosis in retinal pericytes were investigated to evaluate the pathogenesis of diabetic retinopathy. Under the 20 mM glucose condition, intracellular calcium concentrations and caspase-3 activities were significantly increased, and reduced glutathione (GSH) contents were significantly decreased compared with those under the 5.5 mM glucose condition. These abnormalities were all significantly prevented by an aldose reductase inhibitor, SNK-860. Glucose-induced apoptosis was partially but significantly prevented by SNK-860, an inhibitor of calcium-dependent cysteine protease, calpain, or GSH supplementation, and completely normalized by a caspase-3 inhibitor. These observations suggest that glucose-induced apoptosis in retinal pericytes, as one of the pathogenic factors of diabetic retinopathy, would be mediated through an aldose reductase-sensitive pathway including calcium-calpain cascade and increased oxidative stress, and that caspase-3 would be located furthest downstream of these apoptotic signals.


Diabetes | 1996

Effects of Beraprost Sodium and Insulin on the Electroretinogram, Nerve Conduction, and Nerve Blood Flow in Rats with Streptozotocin-Induced Diabetes

Nigishi Hotta; Naoki Koh; Fumihiko Sakakibara; Jiro Nakamura; Yoji Hamada; Tomohiro Hara; Koichi Mori; Eitaro Nakashima; Keiko Naruse; Hideo Fukasawa; Hironobu Kakuta; Nobuo Sakamoto

The effect of a prostacyclin analog, beraprost sodium, on the electroretinogram, motor nerve conduction velocity, and nerve blood flow was determined in rats with streptozotocin-induced diabetes and was compared with the effect of insulin. Beraprost sodium (0.01 mg · kg−1 · day−1 for 8 weeks) significantly shortened the peak latency of the electroretinogram b-wave, increased tail nerve conduction velocity, and increased sciatic nerve blood flow in diabetic rats (P < 0.0003, 0.0001, and 0.0001 vs. untreated diabetic rats, respectively). This was accompanied by a significant increase in the 6-keto-prostaglandin F1α content of the thoracic aorta and a marked increase in the cAMP content of the sciatic nerve. Beraprost sodium had no effect on the sorbitol and fructose contents of the sciatic nerve and retina, but insulin (8–10 U/day) significantly reduced both parameters. These findings suggest that beraprost sodium may be useful for prevention of vascular and neural dysfunction in the retina and peripheral nerve.


Diabetologia | 2011

Association of genetic variants for susceptibility to obesity with type 2 diabetes in Japanese individuals

Fumihiko Takeuchi; Ken Yamamoto; Tomohiro Katsuya; Takao Sugiyama; Akihiro Fujioka; Masato Isono; Keizo Ohnaka; Tomomi Fujisawa; Eitaro Nakashima; Hiroshi Ikegami; Jiro Nakamura; Yukio Yamori; Shuhei Yamaguchi; Shotai Kobayashi; Toshio Ogihara; Ryoichi Takayanagi; N. Kato

Aims/hypothesisIn populations of East Asian descent, we performed a replication study of loci previously identified in populations of European descent as being associated with obesity measures such as BMI and type 2 diabetes.MethodsWe genotyped 14 single nucleotide polymorphisms (SNPs) from 13 candidate loci that had previously been identified by genome-wide association meta-analyses for obesity measures in Europeans. Genotyping was done in 18,264 participants from two general Japanese populations. For SNPs showing an obesity association in Japanese individuals, we further examined diabetes associations in up to 6,781 cases and 7,307 controls from a subset of the original, as well as from additional populations.ResultsSignificant obesity associations (p < 0.1 two-tailed, concordant direction with previous reports) were replicated for 11 SNPs from the following ten loci in Japanese participants: SEC16B, TMEM18, GNPDA2, BDNF, MTCH2, BCDIN3D–FAIM2, SH2B1–ATP2A1, FTO, MC4R and KCTD15. The strongest effect was observed at TMEM18 rs4854344 (p = 7.1 × 10−7 for BMI). Among the 11 SNPs showing significant obesity association, six were also associated with diabetes (OR 1.05−1.17; p = 0.04−2.4 × 10−7) after adjustment for BMI in the Japanese. When meta-analysed with data from the previous reports, the BMI-adjusted diabetes association was found to be highly significant for the FTO locus in East Asians (OR 1.13; 95% CI 1.09−1.18; p = 7.8 × 10−10) with substantial inter-ethnic heterogeneity (p = 0.003).Conclusions/interpretationWe confirmed that ten candidate loci are associated with obesity measures in the general Japanese populations. Six (of ten) loci exert diabetogenic effects in the Japanese, although relatively modest in size, and independently of increased adiposity.

Collaboration


Dive into the Eitaro Nakashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Naruse

Aichi Gakuin University

View shared research outputs
Top Co-Authors

Avatar

Hideki Kamiya

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge