Eitel Mpoudi Ngole
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eitel Mpoudi Ngole.
Journal of Virology | 2009
Jun Takehisa; Matthias H. Kraus; Ahidjo Ayouba; Elizabeth Bailes; Fran Van Heuverswyn; Julie M. Decker; Yingying Li; Rebecca S. Rudicell; Gerald H. Learn; Cecile Neel; Eitel Mpoudi Ngole; George M. Shaw; Martine Peeters; Paul M. Sharp; Beatrice H. Hahn
ABSTRACT Western lowland gorillas (Gorilla gorilla gorilla) are infected with a simian immunodeficiency virus (SIVgor) that is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively) in west central Africa. Although existing data suggest a chimpanzee origin for SIVgor, a paucity of available sequences has precluded definitive conclusions. Here, we report the molecular characterization of one partial (BQ664) and three full-length (CP684, CP2135, and CP2139) SIVgor genomes amplified from fecal RNAs of wild-living gorillas at two field sites in Cameroon. Phylogenetic analyses showed that all SIVgor strains clustered together, forming a monophyletic lineage throughout their genomes. Interestingly, the closest relatives of SIVgor were not SIVcpzPtt strains from west central African chimpanzees (Pan troglodytes troglodytes) but human viruses belonging to HIV-1 group O. In trees derived from most genomic regions, SIVgor and HIV-1 group O formed a sister clade to the SIVcpzPtt lineage. However, in a tree derived from 5′ pol sequences (∼900 bp), SIVgor and HIV-1 group O fell within the SIVcpzPtt radiation. The latter was due to two SIVcpzPtt strains that contained mosaic pol sequences, pointing to the existence of a divergent SIVcpzPtt lineage that gave rise to SIVgor and HIV-1 group O. Gorillas appear to have acquired this lineage at least 100 to 200 years ago. To examine the biological properties of SIVgor, we synthesized a full-length provirus from fecal consensus sequences. Transfection of the resulting clone (CP2139.287) into 293T cells yielded infectious virus that replicated efficiently in both human and chimpanzee CD4+ T cells and used CCR5 as the coreceptor for viral entry. Together, these results provide strong evidence that P. t. troglodytes apes were the source of SIVgor. These same apes may also have spawned the group O epidemic; however, the possibility that gorillas served as an intermediary host cannot be excluded.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Andrew H. Moeller; Yingying Li; Eitel Mpoudi Ngole; Steve Ahuka-Mundeke; Elizabeth V. Lonsdorf; Anne E. Pusey; Martine Peeters; Beatrice H. Hahn; Howard Ochman
Significance Human lifestyles profoundly influence the communities of microorganisms that inhabit the body, that is, the microbiome; however, how the microbiomes of humans have diverged from those found within wild-living hominids is not clear. To establish how the gut microbiome has changed since the diversification of human and ape species, we characterized the microbial assemblages residing within hundreds of wild chimpanzees, bonobos, and gorillas. Changes in the composition of the microbiome accrued steadily as African apes diversified, but human microbiomes have diverged at an accelerated pace owing to a dramatic loss of ancestral microbial diversity. These results suggest that the human microbiome has undergone a substantial transformation since the human–chimpanzee split. Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.
Journal of Virology | 2010
Colin P. Sharp; Matthew LeBreton; Kalle Kantola; Ahmadou Nana; Joseph Le Doux Diffo; Cyrille F. Djoko; Ubald Tamoufe; John Kiyang; Tafon G. Babila; Eitel Mpoudi Ngole; Oliver G. Pybus; Eric Delwart; Eric Delaporte; Martine Peeters; Maria Söderlund-Venermo; Klaus Hedman; Nathan D. Wolfe; Peter Simmonds
ABSTRACT Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Mirela D’arc; Ahidjo Ayouba; Amandine Esteban; Gerald H. Learn; Vanina Boué; Florian Liegeois; Lucie Etienne; Nikki Tagg; Fabian H. Leendertz; Christophe Boesch; Nadege Freda Madinda; Martha M. Robbins; Maryke Gray; Amandine Cournil; Marcel Ooms; Michael Letko; Viviana Simon; Paul M. Sharp; Beatrice H. Hahn; Eric Delaporte; Eitel Mpoudi Ngole; Martine Peeters
Significance Understanding emerging disease origins is important to gauge future human infection risks. This is particularly true for the various forms of the AIDS virus, HIV-1, which were transmitted to humans on four independent occasions. Previous studies identified chimpanzees in southern Cameroon as the source of the pandemic M group, as well as the geographically more restricted N group. Here, we show that the remaining two groups also emerged in southern Cameroon but had their origins in western lowland gorillas. Although group P has only been detected in two individuals, group O has spread extensively throughout west central Africa. Thus, both chimpanzees and gorillas harbor viruses that are capable of crossing the species barrier to humans and causing major disease outbreaks. HIV-1, the cause of AIDS, is composed of four phylogenetic lineages, groups M, N, O, and P, each of which resulted from an independent cross-species transmission event of simian immunodeficiency viruses (SIVs) infecting African apes. Although groups M and N have been traced to geographically distinct chimpanzee communities in southern Cameroon, the reservoirs of groups O and P remain unknown. Here, we screened fecal samples from western lowland (n = 2,611), eastern lowland (n = 103), and mountain (n = 218) gorillas for gorilla SIV (SIVgor) antibodies and nucleic acids. Despite testing wild troops throughout southern Cameroon (n = 14), northern Gabon (n = 16), the Democratic Republic of Congo (n = 2), and Uganda (n = 1), SIVgor was identified at only four sites in southern Cameroon, with prevalences ranging from 0.8–22%. Amplification of partial and full-length SIVgor sequences revealed extensive genetic diversity, but all SIVgor strains were derived from a single lineage within the chimpanzee SIV (SIVcpz) radiation. Two fully sequenced gorilla viruses from southwestern Cameroon were very closely related to, and likely represent the source population of, HIV-1 group P. Most of the genome of a third SIVgor strain, from central Cameroon, was very closely related to HIV-1 group O, again pointing to gorillas as the immediate source. Functional analyses identified the cytidine deaminase APOBEC3G as a barrier for chimpanzee-to-gorilla, but not gorilla-to-human, virus transmission. These data indicate that HIV-1 group O, which spreads epidemically in west central Africa and is estimated to have infected around 100,000 people, originated by cross-species transmission from western lowland gorillas.
Journal of Virology | 2011
Heli Harvala; Colin P. Sharp; Eitel Mpoudi Ngole; Eric Delaporte; Martine Peeters; Peter Simmonds
ABSTRACT Enteroviruses (EVs), members of the family Picornaviridae, are a genetically and antigenically diverse range of viruses causing acute infections in humans and several Old World monkey (OWM) species. Despite their known wide distribution in primates, nothing is currently known about the occurrence, frequency, and genetic diversity of enteroviruses infecting apes. To investigate this, 27 chimpanzee and 27 gorilla fecal samples collected from undisturbed jungle areas with minimal human contact in Cameroon were screened for EVs. Four chimpanzee samples were positive, but none of the gorilla samples were positive. Genetic characterization of the VP1, VP4, and partial VP2 genes, the 5′ untranslated region, and partial 3Dpol sequences enabled chimpanzee-derived EVs to be identified as (i) the species A type, EV76, (ii) a new species D type assigned as EV111, along with a human isolate from the Democratic Republic of Congo previously described by the International Committee on the Taxonomy of Viruses, and (iii) a new species B type (assigned as EV110) most closely related to, although a distinct type from, the SA5 isolate recovered from a vervet monkey. The identification of EVs infecting chimpanzees related to those circulating in human and OWM populations provides evidence for cross-species transmission of EVs between primates. However, the direction of transfer and the existence of primate sources of zoonotic enterovirus infections in humans require further investigation of population exposure and more extensive characterization of EVs circulating in wild ape populations.
AIDS Research and Human Retroviruses | 2009
Ahidjo Ayouba; Truong Xuan Lien; Janin Nouhin; Laurence Vergne; Avelin F. Aghokeng; Nicole Ngo-Giang-Huong; Halimatou Diop; Coumba Toure Kane; Diane Valéa; François Rouet; Dominique Joulia-Ekaza; Thomas Toni; Eric Nerrienet; Eitel Mpoudi Ngole; Eric Delaporte; Dominique Costagliola; Martine Peeters; Marie-Laure Chaix
The frequency of transmitted HIV drug resistance (HIVDR) was evaluated in the context of rapid scale-up of antiretroviral treatment in Thailand, Vietnam, Burkina Faso, Côte dIvoire, and Senegal by using an adaptation of the WHO generic protocol of the HIV Drug Resistance Threshold Survey (HIVDR-TS) for sample collection and classification. Resistance-associated mutations were interpreted using the 2009 WHO list for epidemiological surveys. We included 266 subjects from the five study sites. Of the 266 RT and PR sequences analyzed, two from Vietnam harbored virus with major drug resistance mutations (G190A in RT for one individual and M46I in PR for the second individual). Phylogenetic analysis revealed that CRF01_AE predominates (>90%) in Thailand and Vietnam. CRF02 (>65%) cocirculates with other HIV-1 variants in Senegal and Côte dIvoire. The prevalence of HIVDRM is scored as low (< or = 5%) in all the five sites for the three drug classes analyzed. A continuous population survey for HIVDRM will provide a rational basis for maintaining or changing the current first line regimen in these countries.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sesh A. Sundararaman; Weimin Liu; Brandon F. Keele; Gerald H. Learn; Kyle Bittinger; Fatima Mouacha; Steve Ahuka-Mundeke; Magnus Manske; Scott Sherrill-Mix; Yingying Li; Jordan A. Malenke; Eric Delaporte; Christian Laurent; Eitel Mpoudi Ngole; Dominic P. Kwiatkowski; George M. Shaw; Julian C. Rayner; Martine Peeters; Paul M. Sharp; Frederic D. Bushman; Beatrice H. Hahn
Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.
Journal of Virology | 2012
Lucie Etienne; Sabrina Locatelli; Ahidjo Ayouba; Amandine Esteban; Christelle Butel; Florian Liegeois; Avelin F. Aghokeng; Eric Delaporte; Eitel Mpoudi Ngole; Martine Peeters
ABSTRACT Simian immunodeficiency viruses infecting western lowland gorillas (SIVgor) are closely related to HIV-1 and are most likely the ancestors of HIV-1 groups O and P. At present, limited data are available on genetic diversity, transmission, viral evolution, and pathogenicity of SIVgor in its natural host. Between 2004 and 2011, 961 putative gorilla fecal samples were collected at the Campo Maan National Park, Cameroon. Among them, 16% cross-reacted with HIV-1 antibodies, corresponding to at least 34 infected gorillas. Combining host genotyping and field data, we identified four social groups composed of 7 to 15 individuals each, with SIV rates ranging from 13% to 29%. Eleven SIVgor-infected gorillas were sampled multiple times; two most likely seroconverted during the study period, showing that SIVgor continues to spread. Phylogenetic analysis of partial env and pol sequences revealed cocirculation of closely related and divergent strains among gorillas from the same social group, indicating SIVgor transmissions within and between groups. Parental links could be inferred for some gorillas infected with closely related strains, suggesting vertical transmission, but horizontal transmission by sexual or aggressive behavior was also suspected. Intrahost molecular evolution in one gorilla over a 5-year period showed viral adaptations characteristic of escape mutants, i.e., V1V2 loop elongation and an increased number of glycosylation sites. Here we show for the first time the feasibility of noninvasive monitoring of nonhabituated gorillas to study SIVgor infection over time at both the individual and population levels. This approach can also be applied more generally to study other pathogens in wildlife.
Molecular Ecology | 2015
Andrew H. Moeller; Martine Peeters; Ahidjo Ayouba; Eitel Mpoudi Ngole; Amadine Esteban; Beatrice H. Hahn; Howard Ochman
Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the hosts gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild‐living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV‐1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV‐1‐infected humans and SIVcpz‐infected chimpanzees, SIVgor‐infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf‐based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla‐specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV‐1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority.
Journal of General Virology | 2014
Heli Harvala; Dung Van Nguyen; Chloe McIntyre; Steve Ahuka-Mundeke; Eitel Mpoudi Ngole; Eric Delaporte; Martine Peeters; Peter Simmonds
A total of 139 stool samples from wild chimpanzees, gorillas and bonobos in Cameroon and Democratic Republic of Congo (DRC) were screened for enteroviruses (EVs) by reverse transcription PCR. Enterovirus RNA was detected in 10 % of samples, comprising eight from 58 sampled chimpanzees (13.8 %), one from 40 bonobos (2.5 %) and five from 40 gorillas (12.2 %). Three viruses isolated from chimpanzees grouped with human isolate EV-A89 and four (four chimpanzees, one gorilla) represented a newly identified type, EV-A119. These species A virus types overlapped with those circulating in human populations in the same area. The remaining six strains comprised a new species D type, EV-D120, infecting one chimpanzee and four gorillas, and a single EV variant infecting a bonobo that was remarkably divergent from other EVs and potentially constitutes a new enterovirus species. The study demonstrates both the circulation of genetically divergent EV variants in apes and monkeys as well as those shared with local human populations.