Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eivind A. B. Undheim is active.

Publication


Featured researches published by Eivind A. B. Undheim.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models

Shilong Yang; Yao Xiao; Di Kang; Jie Liu; Yuan Li; Eivind A. B. Undheim; Julie K. Klint; Mingqiang Rong; Ren Lai; Glenn F. King

Significance The economic burden of chronic pain in the United States is currently ∼


Nature | 2016

Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain

Jeremiah D. Osteen; Volker Herzig; John Gilchrist; Joshua J. Emrick; Chuchu Zhang; Xidao Wang; Joel Castro; Sonia Garcia-Caraballo; Luke Grundy; Grigori Y. Rychkov; Andy Weyer; Zoltan Dekan; Eivind A. B. Undheim; Paul F. Alewood; Cheryl L. Stucky; Stuart M. Brierley; Allan I. Basbaum; Frank Bosmans; Glenn F. King; David Julius

600 billion per annum, which exceeds the combined annual cost of cancer, heart disease, and diabetes. Few drugs are available for treating chronic pain, and many have limited efficacy and dose-limiting side-effects. Humans with inheritable loss-of-function mutations in the voltage-gated sodium channel NaV1.7 are indifferent to all types of pain, and therefore drugs that block this channel should be useful analgesics for treating many pain conditions. Herein we describe Ssm6a, a peptide from centipede venom that potently and selectively blocks the human NaV1.7 channel. Ssm6a proved to be more analgesic than morphine in rodent pain models and did not cause any side-effects. Loss-of-function mutations in the human voltage-gated sodium channel NaV1.7 result in a congenital indifference to pain. Selective inhibitors of NaV1.7 are therefore likely to be powerful analgesics for treating a broad range of pain conditions. Herein we describe the identification of µ-SLPTX-Ssm6a, a unique 46-residue peptide from centipede venom that potently inhibits NaV1.7 with an IC50 of ∼25 nM. µ-SLPTX-Ssm6a has more than 150-fold selectivity for NaV1.7 over all other human NaV subtypes, with the exception of NaV1.2, for which the selectivity is 32-fold. µ-SLPTX-Ssm6a contains three disulfide bonds with a unique connectivity pattern, and it has no significant sequence homology with any previously characterized peptide or protein. µ-SLPTX-Ssm6a proved to be a more potent analgesic than morphine in a rodent model of chemical-induced pain, and it was equipotent with morphine in rodent models of thermal and acid-induced pain. This study establishes µ-SPTX-Ssm6a as a promising lead molecule for the development of novel analgesics targeting NaV1.7, which might be suitable for treating a wide range of human pain pathologies.


PLOS ONE | 2013

Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli

Julie K. Klint; Sebastian Senff; Natalie J. Saez; Radha Seshadri; Ho Yee Lau; Niraj S. Bende; Eivind A. B. Undheim; Lachlan D. Rash; Mehdi Mobli; Glenn F. King

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Future Medicinal Chemistry | 2014

Spider venomics: implications for drug discovery

Sandy S. Pineda; Eivind A. B. Undheim; Darshani B. Rupasinghe; Maria P. Ikonomopoulou; Glenn F. King

Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2–6 disulfide bonds.


Toxins | 2013

Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins

Kartik Sunagar; Timothy N. W. Jackson; Eivind A. B. Undheim; Syed A. Ali; Agostinho Antunes; Bryan G. Fry

Over a period of more than 300 million years, spiders have evolved complex venoms containing an extraordinary array of toxins for prey capture and defense against predators. The major components of most spider venoms are small disulfide-bridged peptides that are highly stable and resistant to proteolytic degradation. Moreover, many of these peptides have high specificity and potency toward molecular targets of therapeutic importance. This unique combination of bioactivity and stability has made spider-venom peptides valuable both as pharmacological tools and as leads for drug development. This review describes recent advances in spider-venom-based drug discovery pipelines. We discuss spider-venom-derived peptides that are currently under investigation for treatment of a diverse range of pathologies including pain, stroke and cancer.


Molecular & Cellular Proteomics | 2013

Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains

Andreas Brust; Kartik Sunagar; Eivind A. B. Undheim; Irina Vetter; Daryl C. Yang; Nicholas R. Casewell; Timothy N. W. Jackson; Ivan Koludarov; Paul F. Alewood; Wayne C. Hodgson; Richard J. Lewis; Glenn F. King; Agostinho Antunes; Iwan Hendrikx; Bryan G. Fry

Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx.


Toxins | 2013

Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds

Kartik Sunagar; Eivind A. B. Undheim; Angelo H. C. Chan; Ivan Koludarov; Sergio A. Muñoz-Gómez; Agostinho Antunes; Bryan G. Fry

Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecules surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.


Journal of Proteomics | 2013

Dracula's children: molecular evolution of vampire bat venom

Dolyce H.W. Low; Kartik Sunagar; Eivind A. B. Undheim; Syed A. Ali; Alejandro Alagón; Tim Ruder; Timothy N. W. Jackson; Sandy Pineda Gonzalez; Glenn F. King; Alun Jones; Agostinho Antunes; Bryan G. Fry

The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent’s worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged peptides and antimicrobial peptides (AMP). We have thus demonstrated that even neglected lineages of scorpions are a rich pool of novel biochemical components, which have evolved over millions of years to target specific ion channels in prey animals, and as a result, possess tremendous implications in therapeutics.


PLOS ONE | 2013

Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf

Kartik Sunagar; Bryan G. Fry; Timothy N. W. Jackson; Nicholas R. Casewell; Eivind A. B. Undheim; Nicolas Vidal; Syed A. Ali; Glenn F. King; Karthikeyan Vasudevan; Vitor Vasconcelos; Agostinho Antunes

UNLABELLED While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and platelet aggregation. We show that vampire bat venom proteins possibly evade host immune response by the mutation of the surface chemistry through focal mutagenesis under the guidance of positive Darwinian selection. These results not only contribute to the body of knowledge regarding haematophagous venoms but also provide a rich resource for novel lead compounds for use in drug design and development. BIOLOGICAL SIGNIFICANCE These results have direct implications in understanding the molecular evolutionary history of vampire bat venom. The unusual peptides discovered reinforce the value of studying such neglected taxon for biodiscovery.


Toxins | 2013

Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

Timothy N. W. Jackson; Kartik Sunagar; Eivind A. B. Undheim; Ivan Koludarov; Angelo H. C. Chan; Kate L. Sanders; Syed A. Ali; Iwan Hendrikx; Nathan Dunstan; Bryan G. Fry

Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

Collaboration


Dive into the Eivind A. B. Undheim's collaboration.

Top Co-Authors

Avatar

Glenn F. King

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Bryan G. Fry

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Koludarov

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alun Jones

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Ruder

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge