Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekaterina A. Obraztsova is active.

Publication


Featured researches published by Ekaterina A. Obraztsova.


Scientific Reports | 2013

Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

Maoshuai He; Hua Jiang; Bilu Liu; Pavel V. Fedotov; Alexander I. Chernov; Elena D. Obraztsova; Filippo Cavalca; Jakob Birkedal Wagner; Thomas Willum Hansen; Ilya V. Anoshkin; Ekaterina A. Obraztsova; Alexey V. Belkin; Emma Sairanen; Albert G. Nasibulin; Juha Lehtonen; Esko I. Kauppinen

Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures on crystalline substrates via epitaxial growth techniques. Here, we have accomplished epitaxial formation of monometallic Co nanoparticles with well-defined crystal structure, and its use as a catalyst in the selective growth of SWNTs. Dynamics of Co nanoparticles formation and SWNT growth inside an atomic-resolution environmental transmission electron microscope at a low CO pressure was recorded. We achieved highly preferential growth of semiconducting SWNTs (~90%) with an exceptionally large population of (6, 5) tubes (53%) in an ambient CO atmosphere. Particularly, we also demonstrated high enrichment in (7, 6) and (9, 4) at a low growth temperature. These findings open new perspectives both for structural control of SWNTs and for elucidating the growth mechanisms.


Scientific Reports | 2016

First nimravid skull from Asia.

Alexander O. Averianov; Ekaterina A. Obraztsova; Igor G. Danilov; Pavel P. Skutschas; Jianhua Jin

Maofelis cantonensis gen. and sp. nov. is described based on a complete cranium from the middle-upper Eocene Youganwo Formation of Maoming Basin, Guangdong Province, China. The new taxon has characters diagnostic for Nimravidae such as a short cat-like skull, short palate, ventral surface of petrosal dorsal to that of basioccipital, serrations on the distal carina of canine, reduced anterior premolars, and absence of posterior molars (M2-3). It is plesiomorphic nimravid taxon similar to Nimravidae indet. from Quercy (France) in having the glenoid pedicle and mastoid process without ventral projections, a planar basicranium in which the lateral rim is not ventrally buttressed, and P1 present. The upper canine is less flattened than in other Nimravidae. Maofelis cantonensis gen. and sp. nov. exemplifies the earliest stage of development of sabertooth specialization characteristic of Nimravidae. This taxon, together with other middle-late Eocene nimravid records in South Asia, suggests origin and initial diversification of Nimravidae in Asia. We propose that this group dispersed to North America in the late Eocene and to Europe in the early Oligocene. The subsequent Oligocene diversification of Nimravidae took place in North America and Europe, while in Asia this group declined in the Oligocene, likely because of the earlier development of open habitats on that continent.


Plasma Physics Reports | 2013

Application of microwave discharge for the synthesis of TiB2 and BN nano- and microcrystals in a mixture of Ti-B powders in a nitrogen atmosphere

G. M. Batanov; N. K. Berezhetskaya; V. D. Borzosekov; L D Iskhakova; L. V. Kolik; E. M. Konchekov; A. A. Letunov; D. V. Malakhov; Filipp O. Milovich; Ekaterina A. Obraztsova; Elena D. Obraztsova; A. E. Petrov; K. A. Sarksyan; N. N. Skvortsova; V. D. Stepakhin; N. K. Kharchev

Synthesis of titanium diboride and boron nitride nano- and microcrystals by means of a pulsed microwave discharge in a mixture of Ti-B powders in a nitrogen atmosphere is considered. For this purpose, a new type of reactor with a free surface of the powder mixture was used. The reactor design permits free expansion of the reaction products into the reactor volume and their deposition on the reactor walls. Conditions for the synthesis of TiB2 and BN compounds were studied as functions of the energy input in the discharge, the powder component ratio, the rate of the nitrogen flow through the reactor, and the structure and phase composition of the compounds deposited on the reactor walls. The synthesis of boron nitride and titanium diboride in crystal structures is proven. An important role in the process of synthesis is played by the heating of the mixture due to the titanium diboride synthesis reaction, its behavior in the bulk of the reactor, and the titanium concentration in the powder mixture. It is also found that, as the number of discharges in the bulk of the reactor increases, a dust cloud forms. The luminescence of this cloud indicates that the initiated discharge proceeds not only on the powder surface and in the powder bulk, but also in the reactor volume.


Moscow University Physics Bulletin | 2009

Bactericidal action of single-walled carbon nanotubes

Ekaterina A. Obraztsova; E. P. Lukashev; A. P. Zarubina; I. M. Parkhomenko; Igor V. Yaminsky

The action of single-walled carbon nanotubes (SWCNTs) on cells of the genetically engineered K12 TG1 strain of Escherichia coli, which have a luminescent phenotype generated by the cloning of the lux operon of the native luminescent marine bacterium Photobacterium leiognathi into the strain, is studied in this work. The survival rate of the bacterial cells and their morphological changes are studied by means of atomic force microscopy as a function of their exposure to SWCNTs.


Journal of Nanophotonics | 2015

Single-crystal diamond pyramids: synthesis and application for atomic force microscopy

Feruza T. Tuyakova; Ekaterina A. Obraztsova; Rinat R. Ismagilov

Abstract. Here we present the results of investigations aimed at the development and testing of robust, chemically inert single-crystal diamond probes for atomic force microscopy (AFM). The probes were prepared by assembling common silicon probes with micrometer-sized pyramid-shaped single-crystal diamonds (SCD). The SCD were obtained by the selective thermal oxidation of the polycrystalline films grown by chemical vapor deposition. Electrostatic spray of adhesive coating onto silicon probes was used to attach individual SCD. Geometrical parameters of produced AFM SCD probes were revealed with transmission electron microscopy: the apex angle of the pyramidal diamond crystallite was ∼10  deg, and the curvature radius at the apex was ∼2 to 10 nm. The diamond AFM probes were used for surface imaging of deoxyribonucleic acid deposited on graphite substrate. Obtained results demonstrate high efficiency of the diamond AFM probes, allowing improvement of the image quality compared to standard silicon probes.


Journal of Experimental and Theoretical Physics | 2008

Double resonant Raman scattering in nanographite films

A. N. Obraztsov; Ekaterina A. Obraztsova; A. A. Zolotukhin; Anastasia V. Tyurnina

Experimental results are presented on Raman scattering in graphite films produced by DC plasmaenhanced chemical vapor deposition from a methane-hydrogen gas mixture. Scanning electron and probe microscopy data show that, depending on substrate material and deposition time, the deposited film is either a mesoporous material consisting of graphite nanocrystallites with basal planes oriented perpendicular to the substrate surface or an atomically flat, nanometer-thick stack of graphene layers parallel to the substrate. A comparative Raman spectroscopy analysis is performed for film samples deposited on nickel and silicon substrates for 5 and 60 min, as well as for highly ordered graphite samples. The Raman spectra of the examined samples correspond to the double resonant scattering mechanism. The behavior of Raman peak position and intensity as functions of excitation wavelength suggests a high degree of structural order in the graphite films deposited on nickel for 5 min. The results obtained are used to show that the thickness of these films is 1.5 ± 0.5 nm.


Applied Optics | 2012

Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods

Cosimo D’Andrea; Ekaterina A. Obraztsova; Andrea Farina; Paola Taroni; Guglielmo Lanzani; Antonio Pifferi

In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed.


Nanotechnology | 2016

Structural peculiarities of single crystal diamond needles of nanometer thickness

Andrey S. Orekhov; Feruza T. Tuyakova; Ekaterina A. Obraztsova; Artem Borisovich Loginov; Andrey Chuvilin; A. N. Obraztsov

Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2-200 nm sharp apexes, and with lengths from about 10-160 μm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.


Journal of Nanophotonics | 2016

Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

G. M. Batanov; V. D. Borzosekov; Dmitri Golberg; L D Iskhakova; L. V. Kolik; E. M. Konchekov; Nikolai K. Kharchev; A. A. Letunov; D. V. Malakhov; Filipp O. Milovich; Ekaterina A. Obraztsova; A. E. Petrov; Irina G. Ryabikina; Karen A. Sarksian; V. D. Stepakhin; Nina N. Skvortsova

Abstract. We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal–dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal–dielectric powder mixtures of titanium–boron, molybdenum–boron, titanium–silicon–boron, molybdenum–boron nitride, molybdenum–tungsten–boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.


Journal of Nanophotonics | 2016

Liquid-phase exfoliation of flaky graphite

Alexandra Pavlova; Ekaterina A. Obraztsova; Alexey V. Belkin; Christelle Monat; P. Rojo-Romeo; Elena D. Obraztsova

Abstract. The majority of currently available methods of graphene production have certain drawbacks limiting its scaling. Unlike the others, liquid-phase exfoliation of graphite is a promising technique for high-yield graphene production. In this work, we present our results on one- to four-layer graphene production using various solvents and surfactants from flaky graphite. We suppose that the initial graphite in the form of millimeter-size flakes can be more advantageous for extended graphene flake acquisition than graphite powder consisting of tiny particles used in previous works. Half-centimeter–size graphene films were obtained by depositing exfoliated flakes on an arbitrary substrate. Such films can be useful for electronic and photonic applications.

Collaboration


Dive into the Ekaterina A. Obraztsova's collaboration.

Top Co-Authors

Avatar

Elena D. Obraztsova

National Research Nuclear University MEPhI

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feruza T. Tuyakova

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey V. Belkin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pavel V. Fedotov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dmitri Golberg

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

A. A. Letunov

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge