Ekaterina Burov
Alcatel-Lucent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterina Burov.
Optics Express | 2012
Jérémie Thomas; Mikhael Myara; Laurent Troussellier; Ekaterina Burov; Alain Pastouret; David Boivin; Gilles Melin; Olivier Gilard; Michel Sotom; Philippe Signoret
We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.
Optics Express | 2010
Romain Peretti; A-M. Jurdyc; B. Jacquier; Cédric Gonnet; Alain Pastouret; Ekaterina Burov; Olivier Cavani
Ytterbium doped fiber lasers are known to be impacted by the creation of color centers during lasing so called photodarkening. This defect creation was investigated in a spectroscopic point of view, showing the presence of thulium traces (ppb) in the ytterbium doped fiber. Moreover, this contamination exhibit luminescence in the UV range under 976 nm excitation of the ytterbium-doped fiber. In adding more thulium to an ytterbium-doped fiber it was shown that thulium strongly impact the defects creation process, involved in photodarkening.
Proceedings of SPIE | 2010
David Boivin; Thomas Föhn; Ekaterina Burov; Alain Pastouret; Cédric Gonnet; Olivier Cavani; Christine Collet; Simon Lempereur
Ever demanding network implementations brought new requirements to be addressed to offer cost effective and power efficient solutions with smaller footprints. This general trend together with the constant need to improve L-band optical amplification efficiency account for the renewed interest on highly doped Erbium fibers. Erbium doped fiber amplifiers (EDFAs) performance degradation with Er3+ concentration increase has extensively been studied1 and is attributed to additional losses due to energy transfers between neighbouring ions. Experimental observations have been interpreted by the homogeneous up-conversion (HUC) and pair-induced quenching (PIQ) models, which account for pump power penalty and unsaturable absorption respectively. For a given Er3+ concentration, studies have also showed that both fiber manufacturing process and core matrix composition have a strong impact on quenching parameters. In 2009, we introduced a new doping concept involving Al2O3Er nanoparticles (NP) in a MCVD-compatible process showing improved performances in terms of erbium homogeneity along the fiber length for standard doping levels.2 In this paper, we address our most recent work on concentration quenching encountered in both standard and NP Erbium doped fibers.
Optics Express | 2012
Y. Sikali Mamdem; Ekaterina Burov; L-A. de Montmorillon; Yves Jaouën; Gautier Moreau; Renaud Gabet; Frédéric Taillade
Residual stresses inside optical fibers can impact significantly on Brillouin gain spectrum. Based on a 2D-FEM modeling, theoretical results are compared with Brillouin gain measurements for fibers from a same preform with different draw tensions.
Applied Optics | 2012
Olivier Gilard; Jérémie Thomas; Laurent Troussellier; Mikhael Myara; Philippe Signoret; Ekaterina Burov; Michel Sotom
A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity.
Proceedings of SPIE | 2009
E. Régnier; Ekaterina Burov; Alain Pastouret; David Boivin; G. Kuyt; F. Gooijer; A. Bergonzo; A. Berkers; P. Signoret; L. Troussellier; O. Storaasli; Pascale Nouchi
For many years, fiber manufacturers have devoted research efforts to develop fibers with improved radiation resistance, keeping the same advantages and basic properties as standard fibers. Today, both single-mode (SMF) and multimode (MMF) RadHard (for Radiation-Hardened) fibers are available; some of them are MIL-49291 certified and are already used, for example in military applications and at the Large Hadron Collider (LHC) in CERN or in certain nuclear power plants. These RadHard fibers can be easily connected to standard optical networks for classical data transfer or they can also be used for command control. Using some specific properties (Raman or Brillouin scattering, Bragg gratings...), such fibers can also be used as distributed sensing (temperature or strain sensors, etc) in radiation environments. At least, optical fibers can also be used for signal amplification, either in telecom networks, or in fiber lasers. This last category of fibers is called active fibers, in opposition to passive fibers used for simple signal transmission. Draka has also recently worked to improve the radiation-resistance of these active fibers, so that Draka can now offer RadHard fibers for full optical systems.
Optics Letters | 2006
Laurent Labonté; Dominique Pagnoux; Philippe Roy; Faouzi Bahloul; Mourad Zghal; Gilles Melin; Ekaterina Burov; Gilles Renversez
A simple self-referenced nondestructive method is proposed for measuring the cutoff wavelength of microstructured optical fibers (MOFs). It is based on the analysis of the time-dependent optical power transmitted through a bow-tie slit rotating in the far-field pattern of the fiber under test. As a first demonstration, the cutoff wavelength of a 2 m MOF sample is found to be close to that provided by numerical predictions (approximately 25 nm higher). Because of the high dynamics of the measurement, the uncertainty is limited to Dlambda= +/-10 nm.
Proceedings of SPIE | 2012
David Boivin; Alain Pastouret; Ekaterina Burov; Cédric Gonnet; Olivier Cavani; Simon Lempereur; Pierre Sillard; Claire Goldmann; Elodie Saudry; Corinne Chanéac; Alex Shlifer; Uri Ghera
New generation systems are expected to include more intelligent amplifiers able to adapt to many conditions including different gains, channel load, temperature, aging and transient events.1 To face the challenge and meet these new requirements, having an accurate control on the Er environment within the fiber core matrix has never appeared to be so necessary and predominant as it is the case now. Unlike conventional solution doping techniques where Erbium ions are randomly incorporated in the fiber core, our process makes use of a soft chemical synthesis to initially produce Erbium-doped nanoparticles (NPs). Erbium ions are therefore incorporated in the fiber core together with their local environment. So far, our investigations2 first showed that, from the material point of view, quenching levels are intimately linked to the design of the NPs through their chemical composition. Then, from the system perspective, we evidenced the higher power conversion efficiencies exhibited by NP fibers when compared to their conventional counterparts in high power amplifier configurations. In this paper, we address our most recent work focusing on the NP optimisation towards quenching-free Erbiumdoped fibers with a particular focus on core-shell alumino-silicate NPs. Completing our first amplifier results obtained in high power configurations, we also explore new NP fiber profiles that extend the range of their applications. Gain and noise characteristics of typical WDM operating points serve as key indicators on the benefits our NP doping process could provide.
Proceedings of SPIE | 2011
David Boivin; Alain Pastouret; Ekaterina Burov; Cédric Gonnet; Olivier Cavani; Simon Lempereur; Pierre Sillard
In 2009, we introduced a new doping concept involving Al2O3/rare-earth nanoparticles (NP) in a MCVD-compatible process finding potential applications in Erbium-, Ytterbium- or Erbium-Ytterbium-doped fiber amplifiers and lasers.1 This approach, motivated by the need for increased efficiencies and improved attributes, is characterized by the ability to control the rare-earth ion environment independently from the core composition. The NP matrix can therefore be viewed as an optimized sub-micronic amplifying medium for the embedded rareearth ion. The first experimental evidence to support this idea is reported in a comparative study with a standard process2 where homogeneous up-conversion (HUC) and pair-induced quenching (PIQ) levels are extracted from Er3+ unsaturable absorption measurements. NP-based fibers are found to mitigate the effects of the Er3+ concentration increase seen in standard heavily-doped fibers. This conclusion is particularly clear when focusing on the HUC coefficient evolution since, for a given type of NP, its level is independent from the Er3+ concentration in the doped zone. In this paper, we address our most recent work completing these preliminary results. First, we investigate the quenching signature of a new NP design and its behavior when incorporated in different core matrices. The interplay is further analysed by relating this set of measurements to practical EDFA performances. Gain and noise characteristics of typical WDM amplifiers operating points serve as key benchmarking indicators to identify the benefits of NP Erbium-doped fibers in the wide variety of EDFAs implementations.
Journal of Lightwave Technology | 2011
Romain Peretti; B. Jacquier; David Boivin; Ekaterina Burov; Anne-Marie Jurdyc
Erbium-Doped Fiber Amplifiers can present holes in spectral gain in Wavelength Division Multiplexing operation. The origin of this inhomogeneous saturation behavior is still a subject of controversy. In this paper we present both an experimental methods and a gains model. Our experimental method allow us to measure the first homogeneous linewidth of the 1.5 μm erbium emission with gain spectral hole burning consistently with the other measurement in the literature and the model explains the differences observed in literature between GSHB and other measurement methods.