Ekaterina I. Shishatskaya
Siberian Federal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterina I. Shishatskaya.
Journal of Biomaterials Science-polymer Edition | 2003
V.I. Sevastianov; N.V. Perova; Ekaterina I. Shishatskaya; G. S. Kalacheva; T. G. Volova
Samples of olyhydroxyalkanoates (PHAs), polyhydroxybutyrate (PHB) and copolymers poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with 4 and 18 mol% hydroxyvalerate, synthesized by the bacteria Ralstonia eutropha B5786, were investigated. PHA films in contact with blood did not activate the hemostasis system at the level of cell response, but they did activate the coagulation system and the complement reaction. To detect biologically-active components in the PHAs, a detailed analysis of the composition of the polymers was conducted. Gas chromatography-mass spectrometry revealed long-chain fatty acids (FAs) in the tested PHAs. Their total concentration in the polymer ranged from tenths of mol% to 2-3 mol%, depending on the purification method. C16:0 constituted the largest proportion, up to 70%. Of the long-chain hydroxy acids, only β-OH-C14:0 was detected and it did not exceed 0.06 mol%. The analysis of the hemocompatibility properties of the PHAs purified by a specialized procedure, including the quantitative and morphological estimation of platelets adherent to the surface of polymer films, the plasma recalcification time and complement activation studies, indicated that PHB and PHBV can be used in contact with blood. It has been found out that the lipopolysaccharides of bacteria producing PHAs, which contain mostly long-chain hydroxy acids, can be the factor activating the hemostasis systems. Thus, the technology of PHA purification must satisfy rather stringent specific requirements.
Food and Chemical Toxicology | 2016
Zoi Piperigkou; Konstantina Karamanou; Ayse Basak Engin; Chrysostomi Gialeli; Anca Oana Docea; Demitrios H. Vynios; Mauro S. G. Pavão; Kirill S. Golokhvast; Mikhail I. Shtilman; Athanassios Argiris; Ekaterina I. Shishatskaya; Aristidis M. Tsatsakis
Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner.
Journal of Biomaterials Science-polymer Edition | 2006
Ekaterina I. Shishatskaya; I. A. Khlusov; T. G. Volova
Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), T d decreases from 260°C to 225°C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores.
Journal of Biomaterials Science-polymer Edition | 2005
Ekaterina I. Shishatskaya; T. G. Volova; S. A. Gordeev; A. P. Puzyr
The biodegradability of oriented fibers made of polyhydroxybutyrate (P(3HB)) and its co-polymer with β-hydroxyvalerate (P(3HB-co-3HV)) was investigated in buffer solutions and in biological media in vitro and in vivo. The fibers of both polymer types demonstrated resistance to hydrolytic degradation in buffer solutions at 38°C and pH from 4.5 to 7.0 (for up to 180 days). It has been found that the biodegradation of the fibers in vitro in blood and serum and in vivo is accompanied by weight losses and minor changes in the microstructure with no significant losses in the tensile strength over a long time (up to 180 days). The biodegradation rate of the less crystalline co-polymer P(3HB-co-3HV) fibers was 1.4–2.0-times higher than that of the homopolymer P(3HB). It has also been shown that the degradation of the fibers in vivo is influenced both by tissue fluid enzymes and cells (macrophages and foreign-body giant cells). The fibers were eroded on the surface only with no gross defects and no dramatic effects on their mechanical performance.
Bioresource Technology | 2013
T. G. Volova; Evgeniy G. Kiselev; Ekaterina I. Shishatskaya; Natalia O. Zhila; A. N. Boyandin; Daria A. Syrvacheva; Olga N. Vinogradova; G. S. Kalacheva; A. D. Vasiliev; Ivan V. Peterson
Synthesis of polyhydroxyalkanoates (PHAs) by a new strain of Cupriavidus - Cupriavidus eutrophus B-10646 - was investigated under autotrophic growth conditions. Under chemostat, at the specific flow rate D=0.1h(-1), on sole carbon substrate (CO2), with nitrogen, sulfur, phosphorus, potassium, and manganese used as growth limiting elements, the highest poly(3-hydroxybutyrate) [P(3HB)] yields were obtained under nitrogen deficiency. In batch autotrophic culture, in the fermenter with oxygen mass transfer coefficient 0.460 h(-1), P(3HB) yields reached 85% of dry cell weight (DCW) and DCW reached 50 g/l. Concentrations of supplementary PHA precursor substrates (valerate, hexanoate, γ-butyrolactone) and culture conditions were varied to produce, for the first time under autotrophic growth conditions, PHA ter- and tetra-polymers with widely varying major fractions of 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate monomer units. Investigation of the high-purity PHA specimens showed significant differences in their physicochemical and physicomechanical properties.
PLOS ONE | 2014
T. G. Volova; Evgeniy G. Kiselev; Olga N. Vinogradova; Elena D. Nikolaeva; Anton Chistyakov; Aleksey G. Sukovatiy; Ekaterina I. Shishatskaya
This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, γ-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.
Sub-cellular biochemistry | 2012
Christopher J. Brigham; Natalia O. Zhila; Ekaterina I. Shishatskaya; T. G. Volova; Anthony J. Sinskey
Ralstonia eutrophais a Gram-negative betaproteobacterium found natively in soils that can utilize a wide array of carbon sources for growth, and can store carbon intracellularly in the form of polyhydroxyalkanoate. Many aspects of R. eutrophamake it a good candidate for use in biotechnological production of polyhydroxyalkanoate and other bio-based, value added compounds. Manipulation of the organisms carbon flux is a cornerstone to success in developing it as a biotechnologically relevant organism. Here, we examine the methods of controlling and adapting the flow of carbon in R. eutrophametabolism and the wide range of compounds that can be synthesized as a result. The presence of many different carbon utilization pathways and the custom genetic toolkit for manipulation of those pathways gives R. eutrophaa versatility that allows it to be a biotechnologically important organism.
Journal of Biomaterials Science-polymer Edition | 2014
T. G. Volova; Dmitriy Goncharov; A. G. Sukovatyi; Alexander Shabanov; Elena D. Nikolaeva; Ekaterina I. Shishatskaya
In this study, electrospinning was used to prepare ultrafine fibers from PHAs with different chemical compositions: P(3HB) and copolymers: P(3HB-co-4HB), P(3HB-co-3HV), and P(3HB-co-3HHx). The main process parameters that influence ultrafine fiber diameter and properties (polymer concentration, solution feeding rate, working distance, and applied voltage) have been investigated and their effects evaluated. The study revealed electrospinning parameters for the production of high-quality ultrafine fibers and determined which parameters should be varied to tailor the properties of the products. This study is the first to compare biological and physical-mechanical parameters of PHAs with different chemical compositions as dependent upon the fractions of monomers constituting the polymers and ultrafine fiber orientation. Mechanical strength of aligned ultrafine fibers prepared from different PHAs is higher than that of randomly oriented ones; no significant effect of ultrafine fiber orientation on surface properties has been found. None of the fibrous scaffolds produced by electrospinning from PHAs had any adverse effects on attachment, growth, and viability of NIH 3T3 mouse fibroblast cells, and all of them were found to be suitable for tissue engineering applications.
Bulletin of Experimental Biology and Medicine | 2008
Ekaterina I. Shishatskaya; A. V. Goreva; O. N. Voinova; E. V. Inzhevatkin; R. G. Khlebopros; T. G. Volova
An experimental dosage form of rubomycin is developed: the drug is incorporated in absorbable polymeric (polyhydroxybutyrate) matrix in the form of microparticles. Antitumor efficiency of this rubomycin dosage form was studied in laboratory mice with transplanted Ehrlich ascitic carcinoma. Rubomycin deposited in polymeric microparticles exhibited pronounced antitumor activity, inhibited the proliferative activity of Ehrlich ascitic carcinoma, and improved survival of mice with tumors. This dosage form of the drug can be used for local injections.
Artificial Cells Nanomedicine and Biotechnology | 2014
Ekaterina I. Shishatskaya; Igor V. Kamendov; Sergey I. Starosvetsky; Yuri S. Vinnik; Nadya N. Markelova; Andrey A. Shageev; Vladimir A. Khorzhevsky; Olga V. Peryanova; Anna A. Shumilova
Abstract A series of 3D implants and filling materials prepared from powdered biodegradable polymers, polyhydroxyalkanoates (PHAs), have been designed for the purposes of reparative osteogenesis. The 3D implants are made of resorbable polymer of hydroxybutyric acid (poly-3-hydroxybutyrate, P3HB) and a composite of this polymer with hydroxyapatite (HA) (P3HB/HA). The properties of the implants were studied in vivo in a model of segmental osteotomy and compared with commercial material Bio-Oss®. All implants containing P3HB as the main component facilitate reconstructive osteogenesis. P3HB and P3HB/HA show pronounced osteoplastic properties; their in vivo degradation is slow and corresponds to the growth of a new bone tissue, facilitating normal reparative osteogenesis. Also, powdered P3HB and P3HB/tienam can be used as filling materials for osteoplasty of bone cavities infected by Staphylococcus aureus. Biodegradable 3D implants and P3HB-based filling materials show pronounced osteoplastic properties and degrade in vivo at a slow rate, enabling normal reparative osteogenesis.