Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekaterina Kuznetsova is active.

Publication


Featured researches published by Ekaterina Kuznetsova.


ACS Chemical Biology | 2013

An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1

Kyle D. Konze; Anqi Ma; Fengling Li; Dalia Barsyte-Lovejoy; Trevor Parton; Christopher J. MacNevin; Feng Liu; Cen Gao; Xi Ping Huang; Ekaterina Kuznetsova; Marie Rougie; Alice Jiang; Samantha G. Pattenden; Jacqueline L. Norris; Lindsey I. James; Bryan L. Roth; Peter J. Brown; Stephen V. Frye; C.H. Arrowsmith; Klaus M. Hahn; Gang Greg Wang; Masoud Vedadi; Jian Jin

EZH2 or EZH1 is the catalytic subunit of the polycomb repressive complex 2 that catalyzes methylation of histone H3 lysine 27 (H3K27). The trimethylation of H3K27 (H3K27me3) is a transcriptionally repressive post-translational modification. Overexpression of EZH2 and hypertrimethylation of H3K27 have been implicated in a number of cancers. Several selective inhibitors of EZH2 have been reported recently. Herein we disclose UNC1999, the first orally bioavailable inhibitor that has high in vitro potency for wild-type and mutant EZH2 as well as EZH1, a closely related H3K27 methyltransferase that shares 96% sequence identity with EZH2 in their respective catalytic domains. UNC1999 was highly selective for EZH2 and EZH1 over a broad range of epigenetic and non-epigenetic targets, competitive with the cofactor SAM and non-competitive with the peptide substrate. This inhibitor potently reduced H3K27me3 levels in cells and selectively killed diffused large B cell lymphoma cell lines harboring the EZH2(Y641N) mutant. Importantly, UNC1999 was orally bioavailable in mice, making this inhibitor a valuable tool for investigating the role of EZH2 and EZH1 in chronic animal studies. We also designed and synthesized UNC2400, a close analogue of UNC1999 with potency >1,000-fold lower than that of UNC1999 as a negative control for cell-based studies. Finally, we created a biotin-tagged UNC1999 (UNC2399), which enriched EZH2 in pull-down studies, and a UNC1999-dye conjugate (UNC2239) for co-localization studies with EZH2 in live cells. Taken together, these compounds represent a set of useful tools for the biomedical community to investigate the role of EZH2 and EZH1 in health and disease.


Journal of Biological Chemistry | 2006

Genome-wide Analysis of Substrate Specificities of the Escherichia coli Haloacid Dehalogenase-like Phosphatase Family

Ekaterina Kuznetsova; Michael Proudfoot; Claudio F. Gonzalez; Greg Brown; Marina V. Omelchenko; Ivan Borozan; Liran Carmel; Yuri I. Wolf; Hirotada Mori; Alexei Savchenko; C.H. Arrowsmith; Eugene V. Koonin; A. Edwards; Alexander F. Yakunin

Haloacid dehalogenase (HAD)-like hydrolases are a vast superfamily of largely uncharacterized enzymes, with a few members shown to possess phosphatase, β-phosphoglucomutase, phosphonatase, and dehalogenase activities. Using a representative set of 80 phosphorylated substrates, we characterized the substrate specificities of 23 soluble HADs encoded in the Escherichia coli genome. We identified small molecule phosphatase activity in 21 HADs and β-phosphoglucomutase activity in one protein. The E. coli HAD phosphatases show high catalytic efficiency and affinity to a wide range of phosphorylated metabolites that are intermediates of various metabolic reactions. Rather than following the classical “one enzyme-one substrate” model, most of the E. coli HADs show remarkably broad and overlapping substrate spectra. At least 12 reactions catalyzed by HADs currently have no EC numbers assigned in Enzyme Nomenclature. Surprisingly, most HADs hydrolyzed small phosphodonors (acetyl phosphate, carbamoyl phosphate, and phosphoramidate), which also serve as substrates for autophosphorylation of the receiver domains of the two-component signal transduction systems. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, YniC. Many of the secondary activities of HADs might have no immediate physiological function but could comprise a reservoir for evolution of novel phosphatases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

(R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells

Dalia Barsyte-Lovejoy; Fengling Li; Menno J. Oudhoff; John Howard Tatlock; Aiping Dong; Hong Zeng; Hong Wu; Spencer A. Freeman; Matthieu Schapira; Guillermo Senisterra; Ekaterina Kuznetsova; Richard Marcellus; Abdellah Allali-Hassani; Steven Kennedy; Jean-Philippe Lambert; Amber L. Couzens; Ahmed Aman; Anne-Claude Gingras; Rima Al-awar; Paul V. Fish; Brian S. Gerstenberger; Lee R. Roberts; Caroline L. Benn; Rachel L. Grimley; Mitchell J.S. Braam; Fabio Rossi; Marius Sudol; Peter J. Brown; Mark Edward Bunnage; Dafydd R. Owen

Significance Protein methyltransferases constitute an emerging but undercharacterized class of therapeutic targets with diverse roles in normal human biology and disease. Small-molecule “chemical probes” can be powerful tools for the functional characterization of such enzymes, and here we report the discovery of (R)-PFI-2—a first-in-class, potent, highly selective, and cell-active inhibitor of the methyltransferase activity of SETD7 [SET domain containing (lysine methyltransferase) 7]—and two related compounds for control and chemoproteomics studies. We used these compounds to characterize the role of SETD7 in signaling, in the Hippo pathway, that controls cell growth and organ size. Our work establishes a chemical biology tool kit for the study of the diverse roles of SETD7 in cells and further validates protein methyltransferases as a druggable target class. SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2—a first-in-class, potent (Kiapp = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7—and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Developmental Cell | 2013

Control of the Hippo Pathway by Set7-Dependent Methylation of Yap

Menno J. Oudhoff; Spencer A. Freeman; Amber L. Couzens; Frann Antignano; Ekaterina Kuznetsova; Paul H. Min; Jeffrey P. Northrop; Bernhard Lehnertz; Dalia Barsyte-Lovejoy; Masoud Vedadi; C.H. Arrowsmith; Hiroshi Nishina; Michael R. Gold; Fabio Rossi; Anne-Claude Gingras; Colby Zaph

Methylation of nonhistone proteins is emerging as a regulatory mechanism to control protein function. Set7 (Setd7) is a SET-domain-containing lysine methyltransferase that methylates and alters function of a variety of proteins in vitro, but the in vivo relevance has not been established. We found that Set7 is a modifier of the Hippo pathway. Mice that lack Set7 have a larger progenitor compartment in the intestine, coinciding with increased expression of Yes-associated protein (Yap) target genes. Mechanistically, monomethylation of lysine 494 of Yap is critical for cytoplasmic retention. These results identify a methylation-dependent checkpoint in the Hippo pathway.


Biochemistry | 2008

Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis.

Greg Brown; Alexander Singer; Michael Proudfoot; Tatiana Skarina; Youngchang Kim; Changsoo Chang; Irina Dementieva; Ekaterina Kuznetsova; Claudio F. Gonzalez; Andrzej Joachimiak; Alexei Savchenko; Alexander F. Yakunin

Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.


Journal of Biological Chemistry | 2004

Structure- and Function-based Characterization of a New Phosphoglycolate Phosphatase from Thermoplasma acidophilum

Youngchang Kim; Alexander F. Yakunin; Ekaterina Kuznetsova; Xiaohui Xu; Micha Pennycooke; Jun Gu; Fred K. Cheung; Michael Proudfoot; C.H. Arrowsmith; Andrzej Joachimiak; A. Edwards; Dinesh Christendat

The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel β-sheet with strand order S10, S9, S8, S1, S2 and a small β-hairpin, strands S3 and S4. This central sheet is flanked by a set of three α-helices on one side and two helices on the other. The smaller domain is composed of an open faced β-sandwich represented by three antiparallel β-strands, S5, S6, and S7, flanked by two oppositely oriented α-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.


Molecular Systems Biology | 2014

Nucleotide degradation and ribose salvage in yeast

Yi-Fan Xu; Fabien Letisse; Farnaz Absalan; Wenyun Lu; Ekaterina Kuznetsova; Greg Brown; Amy A. Caudy; Alexander F. Yakunin; James R. Broach; Joshua D. Rabinowitz

Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolases other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.


Journal of Biological Chemistry | 2015

Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS

Ekaterina Kuznetsova; Boguslaw Nocek; Greg Brown; Kira S. Makarova; Robert Flick; Yuri I. Wolf; Anna N. Khusnutdinova; Elena Evdokimova; Ke Jin; Kemin Tan; Andrew D. Hanson; Ghulam Hasnain; Rémi Zallot; Valérie de Crécy-Lagard; Mohan Babu; Alexei Savchenko; Andrzej Joachimiak; A. Edwards; Eugene V. Koonin; Alexander F. Yakunin

Background: Haloacid dehalogenase (HAD)-like hydrolases represent the largest superfamily of phosphatases. Results: Biochemical, structural, and evolutionary studies of the 10 uncharacterized soluble HADs from Saccharomyces cerevisiae provided insight into their substrates, active sites, and evolution. Conclusion: Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Significance: Our work contributes to a better understanding of an important model organism. The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.


ACS Medicinal Chemistry Letters | 2013

Synthesis, Optimization, and Evaluation of Novel Small Molecules as Antagonists of WDR5-MLL Interaction.

Yuri Bolshan; Matthäus Getlik; Ekaterina Kuznetsova; Gregory A. Wasney; Taraneh Hajian; Gennadiy Poda; Kong T. Nguyen; Hong Wu; Ludmila Dombrovski; Aiping Dong; Guillermo Senisterra; Matthieu Schapira; C.H. Arrowsmith; Peter J. Brown; Rima Al-awar; Masoud Vedadi; David Smil

The WD40-repeat protein WDR5 plays a critical role in maintaining the integrity of MLL complexes and fully activating their methyltransferase function. MLL complexes, the trithorax-like family of SET1 methyltransferases, catalyze trimethylation of lysine 4 on histone 3, and they have been widely implicated in various cancers. Antagonism of WDR5 and MLL subunit interaction by small molecules has recently been presented as a practical way to inhibit activity of the MLL1 complex, and N-(2-(4-methylpiperazin-1-yl)-5-substituted-phenyl) benzamides were reported as potent and selective antagonists of such an interaction. Here, we describe the protein crystal structure guided optimization of prototypic compound 2 (K dis = 7 μM), leading to identification of more potent antagonist 47 (K dis = 0.3 μM).


Biochimica et Biophysica Acta | 2015

Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2

Mohammad S. Eram; Ekaterina Kuznetsova; Fengling Li; Evelyne Lima-Fernandes; Steven Kennedy; Irene Chau; C.H. Arrowsmith; Matthieu Schapira; Masoud Vedadi

BACKGROUND Dysregulation of methylation of lysine 36 on histone H3 (H3K36) have been implicated in a variety of diseases including cancers. ASH1L and SETD2 are two enzymes among others that catalyze H3K36 methylation. H3K4 methylation has also been reported for ASH1L. METHODS Radioactivity-based enzyme assays, Western and immunoblotting using specific antibodies and molecular modeling were used to characterize substrate specificity of ASH1L and SETD2. RESULTS Here we report on the assay development and kinetic characterization of ASH1L and SETD2 and their substrate specificities in vitro. Both enzymes were active with recombinant nucleosome as substrate. However, SETD2 but not ASH1L methylated histone peptides as well indicating that the interaction of the basic post-SET extension with substrate may not be critical for SETD2 activity. Both enzymes were not active with nucleosome containing a H3K36A mutation indicating their specificity for H3K36. Analyzing the methylation state of the products of ASH1L and SETD2 reactions also confirmed that both enzymes mono- and dimethylate H3K36 and are inactive with H3K4 as substrate, and that only SETD2 is able to trimethylate H3K36 in vitro. CONCLUSIONS We determined the kinetic parameters for ASH1L and SETD2 activity enabling screening for inhibitors that can be used to further investigate the roles of these two proteins in health and disease. Both ASH1L and SETD2 are H3K36 specific methyltransferases but only SETD2 can trimethylate this mark. The basic post-SET extension is critical for ASH1L but not SETD2 activity. GENERAL SIGNIFICANCE We provide full kinetic characterization of ASH1L and SETD2 activity.

Collaboration


Dive into the Ekaterina Kuznetsova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Brown

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Brown

University of California

View shared research outputs
Top Co-Authors

Avatar

Rima Al-awar

Ontario Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge