Ekaterina Semenova
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterina Semenova.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ekaterina Semenova; Matthijs M. Jore; Kirill A. Datsenko; Anna Semenova; Edze R. Westra; Barry L. Wanner; John van der Oost; Stan J. J. Brouns; Konstantin Severinov
Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas resistance carry point mutations in protospacers, though not all protospacer mutations lead to escape. Here, we show that in the case of Escherichia coli subtype CRISPR/Cas system, the requirements for crRNA matching are strict only for a seven-nucleotide seed region of a protospacer immediately following the essential protospacer-adjacent motif. Mutations in the seed region abolish CRISPR/Cas mediated immunity by reducing the binding affinity of the crRNA-guided Cascade complex to protospacer DNA. We propose that the crRNA seed sequence plays a role in the initial scanning of invader DNA for a match, before base pairing of the full-length spacer occurs, which may enhance the protospacer locating efficiency of the E. coli Cascade complex. In agreement with this proposal, single or multiple mutations within the protospacer but outside the seed region do not lead to escape. The relaxed specificity of the CRISPR/Cas system limits escape possibilities and allows a single crRNA to effectively target numerous related viruses.
Nature Communications | 2012
Kirill A. Datsenko; Ksenia Pougach; Anton Tikhonov; Barry L. Wanner; Konstantin Severinov; Ekaterina Semenova
CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated genes) is a small RNA-based adaptive prokaryotic immunity system that functions by acquisition of short fragments of DNA (mainly from foreign invaders such as viruses and plasmids) and subsequent destruction of DNA with sequences matching acquired fragments. Some mutations in foreign DNA that affect the match prevent CRISPR/Cas defensive function. Here we show that matching sequences that are no longer able to elicit defense, still guide the CRISPR/Cas acquisition machinery to foreign DNA, thus making the spacer acquisition process adaptive and leading to restoration of CRISPR/Cas-mediated protection. We present evidence suggesting that after initial recognition of partially matching foreign DNA, the CRISPR/Cas acquisition machinery moves along the DNA molecule, occasionally selecting fragments to be incorporated into the CRISPR locus. Our results explain how adaptive CRISPR/Cas immunity becomes specifically directed towards foreign DNA, allowing bacteria to efficiently counter individual viral mutants that avoid CRISPR/Cas defense.
Molecular Microbiology | 2010
Ksenia Pougach; Ekaterina Semenova; Ekaterina Bogdanova; Kirill A. Datsenko; Marko Djordjevic; Barry L. Wanner; Konstantin Severinov
CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co‐overexpression of Cas genes and a CRISPR cassette engineered to target a λ‐phage), no natural phage resistance due to CRISPR system function was observed in this best‐studied organism and no E. coli CRISPR spacer matches sequences of well‐studied E. coli phages. To better understand the apparently ‘silent’E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.
PLOS Genetics | 2013
Olga Soutourina; Marc Monot; Pierre Boudry; Laure Saujet; Christophe Pichon; Odile Sismeiro; Ekaterina Semenova; Konstantin Severinov; Chantal Le Bouguénec; Jean Yves Coppée; Bruno Dupuy; Isabelle Martin-Verstraete
Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.
PLOS Genetics | 2013
Edze R. Westra; Ekaterina Semenova; Kirill A. Datsenko; Ryan N. Jackson; Blake Wiedenheft; Konstantin Severinov; Stan J. J. Brouns
Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the hosts own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism.
Molecular Microbiology | 2007
Konstantin Severinov; Ekaterina Semenova; Alexey S. Kazakov; Teymur Kazakov; Mikhail S. Gelfand
Microcins are a class of ribosomally synthesized antibacterial peptides produced by Enterobacteriaceae and active against closely related bacterial species. While some microcins are active as unmodified peptides, others are heavily modified by dedicated maturation enzymes. Low‐molecular‐weight microcins from the post‐translationally modified group target essential molecular machines inside the cells. In this review, available structural and functional data about three such microcins – microcin J25, microcin B17 and microcin C7‐C51 – are discussed. While all three low‐molecular‐weight post‐translationally modified microcins are produced by Escherichia coli, inferences based on sequence and structural similarities with peptides encoded or produced by phylogenetically diverse bacteria are made whenever possible to put these compounds into a larger perspective.
RNA Biology | 2013
Ekaterina Savitskaya; Ekaterina Semenova; Vladimir Dedkov; Anastasia Metlitskaya; Konstantin Severinov
In Escherichia coli, the acquisition of new CRISPR spacers is strongly stimulated by a priming interaction between a spacer in CRISPR RNA and a protospacer in foreign DNA. Priming also leads to a pronounced bias in DNA strand from which new spacers are selected. Here, ca. 200,000 spacers acquired during E. coli type I-E CRISPR/Cas-driven plasmid elimination were analyzed. Analysis of positions of plasmid protospacers from which newly acquired spacers have been derived is inconsistent with spacer acquisition machinery sliding along the target DNA as the primary mechanism responsible for strand bias during primed spacer acquisition. Most protospacers that served as donors of newly acquired spacers during primed spacer acquisition had an AAG protospacer adjacent motif, PAM. Yet, the introduction of multiple AAG sequences in the target DNA had no effect on the choice of protospacers used for adaptation, which again is inconsistent with the sliding mechanism. Despite a strong preference for an AAG PAM during CRISPR adaptation, the AAG (and CTT) triplets do not appear to be avoided in known E. coli phages. Likewise, PAM sequences are not avoided in Streptococcus thermophilus phages, indicating that CRISPR/Cas systems may not have been a strong factor in shaping host-virus interactions.
Journal of Bacteriology | 2007
Ekaterina Stepanova; Jookyung Lee; Maria Ozerova; Ekaterina Semenova; Kirill A. Datsenko; Barry L. Wanner; Konstantin Severinov; Sergei Borukhov
Transcription elongation factor GreA induces nucleolytic activity of bacterial RNA polymerase (RNAP). In vitro, transcript cleavage by GreA contributes to transcription efficiency by (i) suppressing pauses and arrests, (ii) stimulating RNAP promoter escape, and (iii) enhancing transcription fidelity. However, it is unclear which of these functions is (are) most relevant in vivo. By comparing global gene expression profiles of Escherichia coli strains lacking Gre factors and strains expressing either the wild type (wt) or a functionally inactive GreA mutant, we identified genes that are potential targets of GreA action. Data analysis revealed that in the presence of chromosomally expressed GreA, 19 genes are upregulated; an additional 105 genes are activated upon overexpression of the wt but not the mutant GreA. Primer extension reactions with selected transcription units confirmed the gene array data. The most prominent stimulatory effect (threefold to about sixfold) of GreA was observed for genes of ribosomal protein operons and the tna operon, suggesting that transcript cleavage by GreA contributes to optimal expression levels of these genes in vivo. In vitro transcription assays indicated that the stimulatory effect of GreA upon the transcription of these genes is mostly due to increased RNAP recycling due to facilitated promoter escape. We propose that transcript cleavage during early stages of initiation is thus the main in vivo function of GreA. Surprisingly, the presence of the wt GreA also led to the decreased transcription of many genes. The mechanism of this effect is unknown and may be indirect.
Journal of Bacteriology | 2009
Pieter Van de Vijver; Gaston Vondenhoff; Teymur Kazakov; Ekaterina Semenova; Konstantin Kuznedelov; Anastasia Metlitskaya; Arthur Van Aerschot; Konstantin Severinov
Microcin C (McC) is a potent antibacterial agent produced by some strains of Escherichia coli. McC consists of a ribosomally synthesized heptapeptide with a modified AMP attached through a phosphoramidate linkage to the alpha-carboxyl group of the terminal aspartate. McC is a Trojan horse inhibitor: it is actively taken inside sensitive cells and processed there, and the product of processing, a nonhydrolyzable aspartyl-adenylate, inhibits translation by preventing aminoacylation of tRNA(Asp) by aspartyl-tRNA synthetase (AspRS). Changing the last residue of the McC peptide should result in antibacterial compounds with targets other than AspRS. However, mutations that introduce amino acid substitutions in the last position of the McC peptide abolish McC production. Here, we report total chemical synthesis of three McC-like compounds containing a terminal aspartate, glutamate, or leucine attached to adenosine through a nonhydrolyzable sulfamoyl bond. We show that all three compounds function in a manner similar to that of McC, but the first compound inhibits bacterial growth by targeting AspRS while the latter two inhibit, respectively, GluRS and LeuRS. Our approach opens a way for creation of new antibacterial Trojan horse agents that target any 1 of the 20 tRNA synthetases in the cell.
Nucleic Acids Research | 2014
Sergey Shmakov; Ekaterina Savitskaya; Ekaterina Semenova; Maria D. Logacheva; Kirill A. Datsenko; Konstantin Severinov
During the process of prokaryotic CRISPR adaptation, a copy of a segment of foreign deoxyribonucleic acid referred to as protospacer is added to the CRISPR cassette and becomes a spacer. When a protospacer contains a neighboring target interference motif, the specific small CRISPR ribonucleic acid (crRNA) transcribed from expanded CRISPR cassette can protect a prokaryotic cell from virus infection or plasmid transformation and conjugation. We show that in Escherichia coli, a vast majority of plasmid protospacers generate spacers integrated in CRISPR cassette in two opposing orientations, leading to frequent appearance of complementary spacer pairs in a population of cells that underwent CRISPR adaptation. When a protospacer contains a spacer acquisition motif AAG, spacer orientation that generates functional protective crRNA is strongly preferred. All other protospacers give rise to spacers oriented in both ways at comparable frequencies. This phenomenon increases the repertoire of available spacers and should make it more likely that a protective crRNA is formed as a result of CRISPR adaptation.