Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekaterina Tkatchouk is active.

Publication


Featured researches published by Ekaterina Tkatchouk.


Nature Chemistry | 2009

A bonding model for gold(I) carbene complexes

Diego Benitez; Nathan D. Shapiro; Ekaterina Tkatchouk; Yi-Ming Wang; William A. Goddard; F. Dean Toste

The last decade has witnessed dramatic growth in the number of reactions catalyzed by electrophilic gold complexes. While proposed mechanisms often invoke the intermediacy of gold-stabilized cationic species, the nature of bonding in these intermediates remains unclear. Herein, we propose that the carbon-gold bond in these intermediates is comprised of varying degrees of both σ and π-bonding; however, the overall bond order is generally less than or equal to unity. The bonding in a given gold-stabilized intermediate, and the position of this intermediate on a continuum ranging from gold-stabilized singlet carbene to gold-coordinated carbocation, is dictated by the carbene substituents and the ancillary ligand. Experiments show that the correlation between bonding and reactivity is reflected in the yield of gold-catalyzed cyclopropanation reactions.


Journal of the American Chemical Society | 2010

Mechanism of C−F Reductive Elimination from Palladium(IV) Fluorides

Takeru Furuya; Diego Benitez; Ekaterina Tkatchouk; Alexandra E. Strom; Pingping Tang; William A. Goddard; Tobias Ritter

The first systematic mechanism study of C-F reductive elimination from a transition metal complex is described. C-F bond formation from three different Pd(IV) fluoride complexes was mechanistically evaluated. The experimental data suggest that reductive elimination occurs from cationic Pd(IV) fluoride complexes via a dissociative mechanism. The ancillary pyridyl-sulfonamide ligand plays a crucial role for C-F reductive elimination, likely due to a kappa(3) coordination mode, in which an oxygen atom of the sulfonyl group coordinates to Pd. The pyridyl-sulfonamide can support Pd(IV) and has the appropriate geometry and electronic structure to induce reductive elimination.


Journal of the American Chemical Society | 2011

Phosphine-Catalyzed Annulations of Azomethine Imines: Allene-Dependent [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] Pathways

Risong Na; Chengfeng Jing; Qihai Xu; Hui Jiang; Xi Wu; Jiayan Shi; Jiangchun Zhong; Min Wang; Diego Benitez; Ekaterina Tkatchouk; William A. Goddard; Hongchao Guo; Ohyun Kwon

In this paper we describe the phosphine-catalyzed [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] annulations of azomethine imines and allenoates. These processes mark the first use of azomethine imines in nucleophilic phosphine catalysis, producing dinitrogen-fused heterocycles, including tetrahydropyrazolo-pyrazolones, -pyridazinones, -diazepinones, and -diazocinones. Counting the two different reaction modes in the [3 + 3] cyclizations, there are five distinct reaction pathways-the choice of which depends on the structure and chemical properties of the allenoate. All reactions are operationally simple and proceed smoothly under mild reaction conditions, affording a broad range of 1,2-dinitrogen-containing heterocycles in moderate to excellent yields. A zwitterionic intermediate formed from a phosphine and two molecules of ethyl 2,3-butadienoate acted as a 1,5-dipole in the annulations of azomethine imines, leading to the [3 + 2 + 3] tetrahydropyrazolo-diazocinone products. The incorporation of two molecules of an allenoate into an eight-membered-ring product represents a new application of this versatile class of molecules in nucleophilic phosphine catalysis. The salient features of this protocol--the facile access to a diverse range of nitrogen-containing heterocycles and the simple preparation of azomethine imine substrates--suggest that it might find extensive applications in heterocycle synthesis.


Journal of the American Chemical Society | 2010

Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes

David C. Powers; Diego Benitez; Ekaterina Tkatchouk; William A. Goddard; Tobias Ritter

In 2009, we reported C-halogen reductive elimination reactions from dinuclear Pd(III) complexes and implicated dinuclear intermediates in Pd(OAc)(2)-catalyzed C-H oxidation chemistry. Herein, we report results of a thorough experimental and theoretical investigation of the mechanism of reductive elimination from such dinuclear Pd(III) complexes, which establish the role of each metal during reductive elimination. Our results implicate reductive elimination from a complex in which the dinuclear core is intact and suggest that redox synergy between the two metals is responsible for the facile reductive elimination reactions observed.


Nature Chemistry | 2010

Radically enhanced molecular recognition

Ali Trabolsi; Niveen M. Khashab; Albert C. Fahrenbach; Douglas C. Friedman; Michael T. Colvin; Karla K. Cotí; Diego Benitez; Ekaterina Tkatchouk; John Carl Olsen; Matthew E. Belowich; Raanan Carmielli; Hussam A. Khatib; William A. Goddard; Michael R. Wasielewski; J. Fraser Stoddart

The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication.


Angewandte Chemie | 2010

Gold-Catalyzed Intramolecular Aminoarylation of Alkenes: C-C Bond Formation through Bimolecular Reductive Elimination

William E. Jr. Brenzovich; Diego Benitez; Aaron D. Lackner; Hunter P. Shunatona; Ekaterina Tkatchouk; William A. Goddard; F. Dean Toste

Gold-ilocks and the 3 mol % catalyst: Bimetallic gold bromides allow the room temperature aminoarylation of unactivated terminal olefins with aryl boronic acids using Selectfluor as an oxidant. A catalytic cycle involving gold(I)/gold(III) and a bimolecular reductive elimination for the key CC bond-forming step is proposed. dppm= bis(diphenylphosphanyl)methane.


Journal of the American Chemical Society | 2011

Phosphoramidite Gold(I)-Catalyzed Diastereo- and Enantioselective Synthesis of 3,4-Substituted Pyrrolidines

Ana Z. Gonzalez; Diego Benitez; Ekaterina Tkatchouk; William A. Goddard; F. Dean Toste

In this article the utility of phosphoramidite ligands in enantioselective Au(I) catalysis was explored in the development of highly diastereo- and enantioselective Au(I)-catalyzed cycloadditions of allenenes. A Au(I)-catalyzed synthesis of 3,4-disubstituted pyrrolidines and γ-lactams is described. This reaction proceeds through the enantioselective Au(I)-catalyzed cyclization of allenenes to form a carbocationic intermediate that is trapped by an exogenous nucleophile, resulting in the highly diastereoselective construction of three contiguous stereogenic centers. A computational study (DFT) was also performed to gain some insight into the underlying mechanisms of these cycloadditions. The utility of this new methodology was demonstrated through the formal synthesis of (-)-isocynometrine.


Journal of the American Chemical Society | 2011

Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes

Ekaterina Tkatchouk; Neal P. Mankad; Diego Benitez; William A. Goddard; F. Dean Toste

We present a detailed study of the mechanism for oxidative heteroarylation, based on DFT calculations and experimental observations. We propose binuclear Au(II)-Au(II) complexes to be key intermediates in the mechanism for gold catalyzed oxidative heteroarylation. The reaction is thought to proceed via a gold redox cycle involving initial oxidation of Au(I) to binuclear Au(II)-Au(II) complexes by Selectfluor, followed by heteroauration and reductive elimination. While it is tempting to invoke a transmetalation/reductive elimination mechanism similar to that proposed for other transition metal complexes, experimental and DFT studies suggest that the key C-C bond forming reaction occurs via a bimolecular reductive elimination process (devoid of transmetalation). In addition, the stereochemistry of the elimination step was determined experimentally to proceed with complete retention. Ligand and halide effects played an important role in the development and optimization of the catalyst; our data provides an explanation for the ligand effects observed experimentally, useful for future catalyst development. Cyclic voltammetry data is presented that supports redox synergy of the Au···Au aurophilic interaction. The monometallic reductive elimination from mononuclear Au(III) complexes is also studied from which we can predict a ~15 kcal/mol advantage for bimetallic reductive elimination.


Chemical Science | 2010

Alkylgold complexes by the intramolecular aminoauration of unactivated alkenes

Rebecca L. LaLonde; William E. Jr. Brenzovich; Diego Benitez; Ekaterina Tkatchouk; Kotaro Kelley; William A. Goddard; F. Dean Toste

Alkylgold(I) complexes were formed from the gold(I)-promoted intramolecular addition of various amine nucleophiles to alkenes. These experiments provide the first direct experimental evidence for the elementary step of gold-promoted nucleophilic addition to an alkene. Deuterium-labeling studies and X-ray crystal structures provide support for a mechanism involving anti-addition of the nucleophile to a gold-activated alkene, which is verified by DFT analysis of the mechanism. Ligand studies indicate that the rate of aminoauration can be drastically increased by use of electron-poor arylphosphines, which are also shown to be favored in ligand exchange experiments. Attempts at protodeauration lead only to recovery of the starting olefins, though the gold can be removed under reducing conditions to provide the purported hydroamination products.


Organic Letters | 2009

On the Impact of Steric and Electronic Properties of Ligands on Gold(I)-Catalyzed Cycloaddition Reactions

Diego Benitez; Ekaterina Tkatchouk; Ana Z. Gonzalez; William A. Goddard; F. Dean Toste

It is shown that [4 + 3] and [4 + 2] cycloaddition pathways are accessible in the Au(I) catalysis of allene-dienes. Seven-membered ring gold-stabilized carbenes, originating from the [4 + 3] cycloaddition process, are unstable and can rearrange via a 1,2-H or a 1,2-alkyl shift to yield six- and seven-membered products. Both steric and electronic properties of the AuL(+) catalyst affect the electronic structure of the intermediate gold-stabilized carbene and its subsequent reactivity.

Collaboration


Dive into the Ekaterina Tkatchouk's collaboration.

Top Co-Authors

Avatar

William A. Goddard

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Diego Benitez

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Dean Toste

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge