Ekaterine Berishvili
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterine Berishvili.
Cell | 2017
Jin Li; Tamara Casteels; Thomas Frogne; Camilla Ingvorsen; Christian Honoré; Monica Courtney; Kilian Huber; Nicole Schmitner; Robin A. Kimmel; Roman A. Romanov; Caterina Sturtzel; Charles-Hugues Lardeau; Johanna Klughammer; Matthias Farlik; Sara Sdelci; Andhira Vieira; Fabio Avolio; François Briand; Igor Baburin; Peter Májek; Florian M. Pauler; Thomas Penz; Alexey Stukalov; Manuela Gridling; Katja Parapatics; Charlotte Barbieux; Ekaterine Berishvili; Andreas Spittler; Jacques Colinge; Keiryn L. Bennett
Summary Type 1 diabetes is characterized by the destruction of pancreatic β cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional β-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic β cell mass from α cells.
Cell Metabolism | 2016
Natalie R. Johnston; Ryan K. Mitchell; Elizabeth Haythorne; Maria R. Paiva Pessoa; Francesca Semplici; Jorge Ferrer; Lorenzo Piemonti; Piero Marchetti; Marco Bugliani; Domenico Bosco; Ekaterine Berishvili; Philip Duncanson; Michael Watkinson; Johannes Broichhagen; Dirk Trauner; Guy A. Rutter; David J. Hodson
Summary The arrangement of β cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual β cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the β cell population in situ is operationally heterogeneous. Mapping of islet functional architecture revealed the presence of hub cells with pacemaker properties, which remain stable over recording periods of 2 to 3 hr. Using a dual optogenetic/photopharmacological strategy, silencing of hubs abolished coordinated islet responses to glucose, whereas specific stimulation restored communication patterns. Hubs were metabolically adapted and targeted by both pro-inflammatory and glucolipotoxic insults to induce widespread β cell dysfunction. Thus, the islet is wired by hubs, whose failure may contribute to type 2 diabetes mellitus.
EMBO Reports | 2016
Jin Li; Johanna Klughammer; Matthias Farlik; Thomas Penz; Andreas Spittler; Charlotte Barbieux; Ekaterine Berishvili; Christoph Bock; Stefan Kubicek
Pancreatic islets of Langerhans contain several specialized endocrine cell types, which are commonly identified by the expression of single marker genes. However, the established marker genes cannot capture the complete spectrum of cellular heterogeneity in human pancreatic islets, and existing bulk transcriptome datasets provide averages across several cell populations. To dissect the cellular composition of the human pancreatic islet and to establish transcriptomes for all major cell types, we performed single‐cell RNA sequencing on 70 cells sorted from human primary tissue. We used this dataset to validate previously described marker genes at the single‐cell level and to identify specifically expressed transcription factors for all islet cell subtypes. All data are available for browsing and download, thus establishing a useful resource of single‐cell expression profiles for endocrine cells in human pancreatic islets.
Hepatology | 2006
Brigid Joseph; Vinay Kumaran; Ekaterine Berishvili; Kuldeep K. Bhargava; Christopher Palestro; Sanjeev Gupta
Disruption of the hepatic endothelial barrier or Kupffer cell function facilitates transplanted cell engraftment in the liver. To determine whether these mechanisms could be activated simultaneously, we studied the effects of monocrotaline, a pyrollizidine alkaloid, with reported toxicity in liver sinusoidal endothelial cells and Kupffer cells. The effects of monocrotaline in Fischer 344 rats were examined by tissue morphology, serum hyaluronic acid levels, and liver tests (endothelial and hepatocyte injury) or incorporation of carbon and 99mTc‐sulfur colloid (Kupffer cell damage). To study changes in cell engraftment and liver repopulation, Fischer 344 rat hepatocytes were transplanted into syngeneic dipeptidyl peptidase IV–deficient rats followed by histological assays. We observed extensive endothelial injury without Kupffer cell or hepatocyte damage in monocrotaline‐treated rats. Monocrotaline enhanced transplanted cell engraftment without changes in transplanted cell numbers or induction of proliferation in native hepatocytes over 3 months. In monocrotaline‐treated rats, transplanted cells integrated into the liver parenchyma and survived in vascular spaces. To determine whether native hepatocytes suffered inapparent damage after monocrotaline, we introduced further liver injury with carbon tetrachloride subsequent to cell transplantation. Monocrotaline sensitized the liver to carbon tetrachloride–induced necrosis, which advanced transplanted cell proliferation, leading to significant liver repopulation. During this process, we observed proliferation of bile duct cells and small epithelial cells, although transplanted hepatocytes did not appear to reconstitute bile ducts. The studies showed that perturbation of multiple liver cell compartments by monocrotaline promoted transplanted cell engraftment and proliferation. In conclusion, development of drugs with monocrotaline‐like effects will help advance liver cell therapy. (HEPATOLOGY 2006;44:1411–1420.)
Hepatology | 2007
Yao-Ming Wu; Brigid Joseph; Ekaterine Berishvili; Vinay Kumaran; Sanjeev Gupta
The potential for organ damage after using drugs or chemicals is a critical issue in medicine. To delineate mechanisms of drug‐induced hepatic injury, we used transplanted cells as reporters in dipeptidyl peptidase IV–deficient mice. These mice were given phenytoin and rifampicin for 3 days, after which monocrotaline was given followed 1 day later by intrasplenic transplantation of healthy C57BL/6 mouse hepatocytes. We examined endothelial and hepatic damage by serologic or tissue studies and assessed changes in transplanted cell engraftment and liver repopulation by histochemical staining for dipeptidyl peptidase IV. Monocrotaline caused denudation of the hepatic sinusoidal endothelium and increased serum hyaluronic acid levels, along with superior transplanted cell engraftment. Together, phenytoin, rifampicin, and monocrotaline caused further endothelial damage, reflected by greater improvement in cell engraftment. Phenytoin, rifampicin, and monocrotaline produced injury in hepatocytes that was not apparent after conventional tissue studies. This led to transplanted cell proliferation and extensive liver repopulation over several weeks, which was more efficient in males compared with females, including greater induction by phenytoin and rifampicin of cytochrome P450 3A4 isoform that converts monocrotaline to toxic intermediates. Through this and other possible mechanisms, monocrotaline‐induced injury in the endothelial compartment was retargeted to simultaneously involve hepatocytes over the long term. Moreover, after this hepatic injury, native liver cells were more susceptible to additional pro‐oxidant injury through thyroid hormone, which accelerated the kinetics of liver repopulation. Conclusion: Transplanted reporter cells will be useful for obtaining insights into homeostatic mechanisms involving liver cell compartments, whereas targeted injury in hepatic endothelial and parenchymal cells with suitable drugs will also help advance liver cell therapy. (HEPATOLOGY 2007.)
Nature Medicine | 2004
Brigid Joseph; Ekaterine Berishvili; Daniel Benten; Vinay Kumaran; Ekaterine Liponava; Kuldeep K. Bhargava; Christopher J. Palestro; Zurab Kakabadze; Sanjeev Gupta
We determine here the functional integrity of auxiliary livers in containers fashioned from the small intestine. Liver microfragments from dipeptidyl peptidase 4 (DPP4)-deficient rats were transplanted into syngeneic normal animals with isolated intestinal segments characterized by mucosal denudation but intact vascular supply. Transplanted liver fragments were restored to confluent tissue with normal hepatic architecture and development of DPP4-positive vessels, indicating angiogenesis and revascularization. Auxiliary liver units expressed multiple hepatotrophic and angiogenic genes, and transplanted tissues remained intact for up to the 6-week duration of the studies with neither ischemic injury nor significant hepatocellular proliferation. Hepatic metabolic, transport and synthetic functions were preserved in auxiliary livers, including uptake and biliary excretion of 99mTc-mebrofenin in syngeneic recipients of liver from F344 rats, as well as secretion of albumin in allografted Nagase analbuminemic rats. This ability to produce functionally competent auxiliary livers in vascularized intestinal segments offers therapeutic potential for liver disease and genetic deficiency.
American Journal of Pathology | 2011
Sriram Bandi; Brigid Joseph; Ekaterine Berishvili; Rohit Singhania; Yao-Ming Wu; Kang Cheng; Sanjeev Gupta
Superior insights into molecular mechanisms of liver failure, which are not fully understood, will help strategies for inducing liver regeneration. We examined hepatotoxic mechanisms in mice homozygous for the severe combined immune deficiency mutation in the protein kinase, DNA-activated, catalytic polypeptide. Mice were treated with rifampicin, phenytoin, and monocrotaline. The ensuing acute liver failure was characterized by serological, histological, and mRNA studies. Subsequently, we studied whether transplantation of hepatocytes could rescue animals with liver failure. We found extensive liver damage in these animals, with mortality over several days. The expression of multiple hepatic genes was rapidly altered, including those representing pathways in oxidative/metabolic stress, inflammation, DNA damage-repair, and ataxia telangiectasia mutant (Atm) signaling pathways. This led to liver cell growth arrest involving cyclin-dependent kinase inhibitor 1A. Transplantation of hepatocytes with microcarriers in the peritoneal cavity efficiently rescued animals with liver failure. Molecular abnormalities rapidly reversed, including in hepatic Atm and downstream signaling pathways; and residual hepatocytes overcame cyclin-dependent kinase inhibitor 1A-induced cell growth arrest. Reseeding of the liver with transplanted hepatocytes was not required for rescue because native hepatocytes overcame cell growth-arrest to regenerate the liver. This likely resulted from paracrine signaling from hepatocytes in the peritoneal cavity. We concluded that Atm signaling played critical roles in the pathological features of liver failure. These studies should help redirect examination of pathophysiologic and therapeutic mechanisms in liver failure.
Transplantation | 2003
Ekaterine Berishvili; Ekaterine Liponava; Nana Kochlavashvili; Kote Kalandarishvili; Levan Benashvili; Sanjeev Gupta; Zurab Kakabadze
Background. Development of an auxiliary liver is of interest for treating several conditions. To examine whether an isolated intestinal segment will support development of a heterotopic auxiliary liver, we studied the fate of liver microfragments in rats. Methods. Small intestinal segments with intact circulation were created, and the small intestinal mucosa was removed. The intestinal segments were filled with autologous liver microfragments, and animals were studied for various periods. Results. Initially, liver microfragments were engulfed by a serosanguineous exudate enriched in polymorphonuclear leukocytes, suggesting an early granulation-type response. Transplanted liver fragments were subsequently reorganized and showed morphologic integrity with typical hepatic lobular organization. Transplanted tissue contained healthy hepatocytes with abundant glycogen content. Transplanted liver remained intact in the small intestine for up to 40 days, although at later times portal fibrosis and bile ductular proliferation were apparent, despite the absence of cholestasis or hepatocellular abnormalities. In contrast, instillation of liver microfragments in the peritoneal cavity led to rapid loss of tissue integrity and phagocytotic clearance of transplanted tissue. Conclusions. Small intestinal segments denuded of the mucosal layer can support heterotopically transplanted liver. Further development of this auxiliary liver system will provide insights into mechanisms concerning neo-organogenesis and into potential therapeutic applications of heterotopic liver in specific diseases.
Transplantation | 2012
Zurab Kakabadze; Koba Shanava; Camillo Ricordi; A. M. James Shapiro; Sanjeev Gupta; Ekaterine Berishvili
Background Transplanting pancreatic islets is of significant interest for type 1 diabetes mellitus. After intraportal injection of islets, inferior engraftment and eventual loss of transplanted islets constitute major limitations. Therefore, alternative approaches will be helpful. Here, we evaluated in animals whether an isolated venous sac would support survival of transplanted islets, along with correction of hyperglycemia. Methods Pancreatic islets isolated from adult Lewis rats were transplanted either into an isolated venous sac made from lumbar vein or into the portal vein of syngeneic rats. The integrity and vascular organization of the venous sac was determined by studies of the local microcirculation. The engraftment, survival, and function of transplanted islets were analyzed by histology, including endocrine function in situ and by glycemic control in rats with streptozotocin-induced diabetes. Results Transplanted islets showed normal morphology with insulin expression in isolated venous sac during the long term. Transplanted islets received blood supply from vasa vasorum and had access to drainage through venous tributaries in the venous sac. This resulted in restoration of euglycemia in diabetic rats. Removal of islet graft-bearing venous sac in diabetic rats led to recurrence of hyperglycemia. By contrast, euglycemia was not restored in rats treated by intraportal transplantation of islets. Conclusions We demonstrated that pancreatic islets successfully engrafted and functioned in the isolated venous sac with ability to restore euglycemia in diabetic rats. Therefore, the isolated venous sac offers a new site for transplantation of pancreatic islets. This would be clinically beneficial as an alternative to intrahepatic islet transplantation.
Transplant International | 2011
Zurab Kakabadze; Sanjeev Gupta; D. Brandhorst; Olle Korsgren; Ekaterine Berishvili
This study evaluated the potential of vascularized small intestinal segments for pancreatic islet transplantation. Islets isolated from Lewis rats were transplanted into diabetic syngeneic recipients. Segments of small intestine were prepared by denudation of the mucosal layer prior to implantation of pancreatic islets into the segments. Animal groups were established to determine engraftment, survival and function of islets transplanted into either intestinal segments or portal vein over up to 60 days. We found transplantation of functionally intact pancreatic islets into small intestinal segments was well tolerated. Transplanted islets were rapidly engrafted in intestinal segments as demonstrated vascularization and expression of insulin and glucagon throughout the 60‐day duration of the studies. Transplantation of islets restored euglycemia in diabetic rats, which was similar to animals receiving islets intraportally. Moreover, animals treated with islet transplants showed normal responses to glucose challenges. Removal of graft‐bearing intestinal segments led to recurrence of hyperglycemia indicating that transplanted islets were responsible for improved outcomes. Therefore, we concluded that vascularized intestinal segments supported reorganization, survival and function of transplanted islets with therapeutic efficacy in streptozotocin‐treated diabetic rats. The approach described here will be appropriate for studying islet biogenesis, reorganization and function, including for cell therapy applications.