Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekatherina Batourina is active.

Publication


Featured researches published by Ekatherina Batourina.


Nature Genetics | 2001

Vitamin A controls epithelial/mesenchymal interactions through Ret expression

Ekatherina Batourina; Suzanna Gim; Natalie A. Bello; Michael E. Shy; Margaret Clagett-Dame; Shankar Srinivas; Frank Costantini; Cathy Mendelsohn

Mutations or rearrangements in the gene encoding the receptor tyrosine kinase RET result in Hirschsprung disease, cancer and renal malformations. The standard model of renal development involves reciprocal signaling between the ureteric bud epithelium, inducing metanephric mesenchyme to differentiate into nephrons, and metanephric mesenchyme, inducing the ureteric bud to grow and branch. RET and GDNF (a RET ligand) are essential mediators of these epithelial–mesenchymal interactions. Vitamin A deficiency has been associated with widespread embryonic abnormalities, including renal malformations. The vitamin A signal is transduced by nuclear retinoic acid receptors (RARs). We previously showed that two RAR genes, Rara and Rarb2, were colocalized in stromal mesenchyme, a third renal cell type, where their deletion led to altered stromal cell patterning, impaired ureteric bud growth and downregulation of Ret in the ureteric bud. Here we demonstrate that forced expression of Ret in mice deficient for both Rara and Rarb2 (Rara−/−Rarb2−/−) genetically rescues renal development, restoring ureteric bud growth and stromal cell patterning. Our studies indicate the presence of a new reciprocal signaling loop between the ureteric bud epithelium and the stromal mesenchyme, dependent on Ret and vitamin A. In the first part of the loop, vitamin-A–dependent signals secreted by stromal cells control Ret expression in the ureteric bud. In the second part of the loop, ureteric bud signals dependent on Ret control stromal cell patterning.


Development | 2005

Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development

Randy S. Levinson; Ekatherina Batourina; Christopher Choi; Marina Vorontchikhina; Jan Kitajewski; Cathy Mendelsohn

Development of the metanephric kidney involves the establishment of discrete zones of induction and differentiation that are crucial to the future radial patterning of the organ. Genetic deletion of the forkhead transcription factor, Foxd1, results in striking renal abnormalities, including the loss of these discrete zones and pelvic fused kidneys. We have investigated the molecular and cellular basis of the kidney phenotypes displayed by Foxd1-null embryos and report here that they are likely to be caused by a failure in the correct formation of the renal capsule. Unlike the single layer of Foxd1-positive stroma that comprises the normal renal capsule, the mutant capsule contains heterogeneous layers of cells, including Bmp4-expressing cells, which induce ectopic phospho-Smad1 signaling in nephron progenitors. This missignaling disrupts their early patterning, which, in turn, causes mispatterning of the ureteric tree, while delaying and disorganizing nephrogenesis. In addition, the defects in capsule formation prevent the kidneys from detaching from the body wall, thus explaining their fusion and pelvic location. For the first time, functions have been ascribed to the renal capsule that include delineation of the organ and acting as a barrier to inappropriate exogenous signals, while providing a source of endogenous signals that are crucial to the establishment of the correct zones of induction and differentiation.


Nature Genetics | 2005

Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder.

Ekatherina Batourina; Sheaumei Tsai; Sarah M. Lambert; Preston C. Sprenkle; Renata Viana; Sonia Dutta; Terry W. Hensle; Fengwei Wang; Karen Niederreither; Andrew P. McMahon; Thomas J. Carroll; Cathy Mendelsohn

Removal of toxic substances from the blood depends on patent connections between the kidney, ureters and bladder that are established when the ureter is transposed from its original insertion site in the male genital tract to the bladder. This transposition is thought to occur as the trigone forms from the common nephric duct and incorporates into the bladder. Here we re-examine this model in the context of normal and abnormal development. We show that the common nephric duct does not differentiate into the trigone but instead undergoes apoptosis, a crucial step for ureter transposition controlled by vitamin A–induced signals from the primitive bladder. Ureter abnormalities occur in 1–2% of the human population and can cause obstruction and end-stage renal disease. These studies provide an explanation for ureter defects underlying some forms of obstruction in humans and redefine the current model of ureter maturation.


Development | 2010

Non-cell-autonomous retinoid signaling is crucial for renal development.

Carolina Rosselot; Lee Spraggon; Ian Chia; Ekatherina Batourina; Paul Riccio; Benson Lu; Karen Niederreither; Pascal Dollé; Gregg Duester; Pierre Chambon; Frank Costantini; Thierry Gilbert; Andrei Molotkov; Cathy Mendelsohn

In humans and mice, mutations in the Ret gene result in Hirschsprungs disease and renal defects. In the embryonic kidney, binding of Ret to its ligand, Gdnf, induces a program of epithelial cell remodeling that controls primary branch formation and branching morphogenesis within the kidney. Our previous studies showed that transcription factors belonging to the retinoic acid (RA) receptor family are crucial for controlling Ret expression in the ureteric bud; however, the mechanism by which retinoid-signaling acts has remained unclear. In the current study, we show that expression of a dominant-negative RA receptor in mouse ureteric bud cells abolishes Ret expression and Ret-dependent functions including ureteric bud formation and branching morphogenesis, indicating that RA-receptor signaling in ureteric bud cells is crucial for renal development. Conversely, we find that RA-receptor signaling in ureteric bud cells depends mainly on RA generated in nearby stromal cells by retinaldehyde dehydrogenase 2, an enzyme required for most fetal RA synthesis. Together, these studies suggest that renal development depends on paracrine RA signaling between stromal mesenchyme and ureteric bud cells that regulates Ret expression both during ureteric bud formation and within the developing collecting duct system.


Developmental Cell | 2013

Retinoid Signaling in Progenitors Controls Specification and Regeneration of the Urothelium

Devangini Gandhi; Andrei Molotkov; Ekatherina Batourina; Kerry Schneider; Hanbin Dan; Maia Reiley; Ed Laufer; Daniel Metzger; Feng-Xia Liang; Yi Liao; Tung-Tien Sun; Bruce J. Aronow; Roni Rosen; Josh Mauney; Rosalyn M. Adam; Carolina Rosselot; Jason P. Van Batavia; Andrew P. McMahon; Jill A. McMahon; Jinjin Guo; Cathy Mendelsohn

The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome.


Development | 2007

The development of the bladder trigone, the center of the anti-reflux mechanism

Renata Viana; Ekatherina Batourina; Hongying Huang; Gregory R. Dressler; Akio Kobayashi; Richard R. Behringer; Ellen Shapiro; Terry W. Hensle; Sarah M. Lambert; Cathy Mendelsohn

The urinary tract is an outflow system that conducts urine from the kidneys to the bladder via the ureters that propel urine to the bladder via peristalsis. Once in the bladder, the ureteral valve, a mechanism that is not well understood, prevents backflow of urine to the kidney that can cause severe damage and induce end-stage renal disease. The upper and lower urinary tract compartments form independently, connecting at mid-gestation when the ureters move from their primary insertion site in the Wolffian ducts to the trigone, a muscular structure comprising the bladder floor just above the urethra. Precise connections between the ureters and the trigone are crucial for proper function of the ureteral valve mechanism; however, the developmental events underlying these connections and trigone formation are not well understood. According to established models, the trigone develops independently of the bladder, from the ureters, Wolffian ducts or a combination of both; however, these models have not been tested experimentally. Using the Cre-lox recombination system in lineage studies in mice, we find, unexpectedly, that the trigone is formed mostly from bladder smooth muscle with a more minor contribution from the ureter, and that trigone formation depends at least in part on intercalation of ureteral and bladder muscle. These studies suggest that urinary tract development occurs differently than previously thought, providing new insights into the mechanisms underlying normal and abnormal development.


Development | 2012

Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice

Masato Hoshi; Ekatherina Batourina; Cathy Mendelsohn; Sanjay Jain

Mutations in the receptor tyrosine kinase RET are associated with congenital anomalies of kidneys or urinary tract (CAKUT). RET tyrosine Y1015 is the docking site for PLCγ, a major regulator of RET signaling. Abrogating signaling via Y1015 causes CAKUT that are markedly different than renal agenesis in Ret-null or RetY1062F mutant mice. We performed analysis of Y1015F mutant upper and lower urinary tracts in mice to delineate its molecular and developmental roles during early urinary tract formation. We found that the degeneration of the common nephric ducts (CND), the caudal-most Wolffian duct (WD) segment, depends on Y1015 signals. The CNDs in Y1015F mutants persist owing to increased proliferation and reduced apoptosis, and showed abundance of phospho-ERK-positive cells. In the upper urinary tract, the Y1015 signals are required for proper patterning of the mesonephros and metanephros. Timely regression of mesonephric mesenchyme and proper demarcation of mesonephric and metanephric mesenchyme from the WD depends on RetY1015 signaling. We show that the mechanism of de novo ectopic budding is via increased ERK activity due to abnormal mesenchymal GDNF expression. Although reduction in GDNF dosage improved CAKUT it did not affect delayed mesenchyme regression. Experiments using whole-mount immunofluorescence confocal microscopy and explants cultures of early embryos with ERK-specific inhibitors suggest an imbalance between increased proliferation, decreased apoptosis and increased ERK activity as a mechanism for WD defects in RetY1015F mice. Our work demonstrates novel inhibitory roles of RetY1015 and provides a possible mechanistic explanation for some of the confounding broad range phenotypes in individuals with CAKUT.


Development | 2015

An illustrated anatomical ontology of the developing mouse lower urogenital tract

Kylie Georgas; Jane Armstrong; Janet R. Keast; Christine E. Larkins; Kirk M. McHugh; E. Michelle Southard-Smith; Martin J. Cohn; Ekatherina Batourina; Hanbin Dan; Kerry Schneider; Dennis P. Buehler; Carrie B. Wiese; Jane Brennan; Jamie A. Davies; Simon Harding; Richard Baldock; Melissa H. Little; Chad M. Vezina; Cathy Mendelsohn

Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. SUMMARY: The developmental anatomy of the lower urinary and reproductive systems of developing and postnatal mice is described, providing a revised ontology to aid the understanding of human urogenital tract abnormalities.


PLOS ONE | 2013

Stromal Protein Ecm1 Regulates Ureteric Bud Patterning and Branching

Suneeta S. Paroly; Fengwei Wang; Lee Spraggon; Joseph Merregaert; Ekatherina Batourina; Benjamin Tycko; Kai M. Schmidt-Ott; Sean M. Grimmond; Melissa H. Little; Cathy Mendelsohn

The interactions between the nephrogenic mesenchyme and the ureteric bud during kidney development are well documented. While recent studies have shed some light on the importance of the stroma during renal development, many of the signals generated in the stroma, the genetic pathways and interaction networks involving the stroma are yet to be identified. Our previous studies demonstrate that retinoids are crucial for branching of the ureteric bud and for patterning of the cortical stroma. In the present study we demonstrate that autocrine retinoic acid (RA) signaling in stromal cells is critical for their survival and patterning, and show that Extracellular matrix 1, Ecm1, a gene that in humans causes irritable bowel syndrome and lipoid proteinosis, is a novel RA-regulated target in the developing kidney, which is secreted from the cortical stromal cells surrounding the cap mesenchyme and ureteric bud. Our studies suggest that Ecm1 is required in the ureteric bud for regulating the distribution of Ret which is normally restricted to the tips, as inhibition of Ecm1 results in an expanded domain of Ret expression and reduced numbers of branches. We propose a model in which retinoid signaling in the stroma activates expression of Ecm1, which in turn down-regulates Ret expression in the ureteric bud cleft, where bifurcation normally occurs and normal branching progresses.


Cell Reports | 2018

Polyploid Superficial Cells that Maintain the Urothelial Barrier Are Produced via Incomplete Cytokinesis and Endoreplication

Jia Wang; Ekatherina Batourina; Kerry Schneider; Spenser Souza; Theresa C. Swayne; Chang Liu; Christopher D. George; Tiffany Tate; Hanbin Dan; Gregory Wiessner; Yelena Zhuravlev; Julie C. Canman; Indira U. Mysorekar; Cathy Mendelsohn

SUMMARY The urothelium is an epithelia barrier lined by a luminal layer of binucleated, octoploid, superficial cells. Superficial cells are critical for production and transport of uroplakins, a family of proteins that assemble into a waterproof crystalline plaque that helps protect against infection and toxic substances. Adult urothelium is nearly quiescent, but rapidly regenerates in response to injury. Yet the mechanism by which binucleated, polyploid, superficial cells are produced remains unclear. Here, we show that superficial cells are likely to be derived from a population of binucleated intermediate cells, which are produced from mononucleated intermediate cells via incomplete cytokinesis. We show that binucleated intermediate and superficial cells increase DNA content via endoreplication, passing through S phase without entering mitosis. The urothelium can be permanently damaged by repetitive or chronic injury or disease. Identification of the mechanism by which superficial cells are produced may be important for developing strategies for urothelial repair.

Collaboration


Dive into the Ekatherina Batourina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Costantini

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew P. McMahon

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge