Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekihiro Seki is active.

Publication


Featured researches published by Ekihiro Seki.


Nature Medicine | 2007

TLR4 enhances TGF-beta signaling and hepatic fibrosis.

Ekihiro Seki; Samuele De Minicis; Christoph H. Österreicher; Johannes Kluwe; Yosuke Osawa; David A. Brenner; Robert F. Schwabe

Hepatic injury is associated with a defective intestinal barrier and increased hepatic exposure to bacterial products. Here we report that the intestinal bacterial microflora and a functional Toll-like receptor 4 (TLR4), but not TLR2, are required for hepatic fibrogenesis. Using Tlr4-chimeric mice and in vivo lipopolysaccharide (LPS) challenge, we demonstrate that quiescent hepatic stellate cells (HSCs), the main precursors for myofibroblasts in the liver, are the predominant target through which TLR4 ligands promote fibrogenesis. In quiescent HSCs, TLR4 activation not only upregulates chemokine secretion and induces chemotaxis of Kupffer cells, but also downregulates the transforming growth factor (TGF)-β pseudoreceptor Bambi to sensitize HSCs to TGF-β–induced signals and allow for unrestricted activation by Kupffer cells. LPS-induced Bambi downregulation and sensitization to TGF-β is mediated by a MyD88–NF-κB–dependent pathway. Accordingly, Myd88-deficient mice have decreased hepatic fibrosis. Thus, modulation of TGF-β signaling by a TLR4-MyD88–NF-κB axis provides a novel link between proinflammatory and profibrogenic signals.


Immunity | 2002

SOCS-1 Participates in Negative Regulation of LPS Responses

Reiko Nakagawa; Tetsuji Naka; Hiroko Tsutsui; Minoru Fujimoto; Akihiro Kimura; Tatsuo Abe; Ekihiro Seki; Shintaro Sato; Osamu Takeuchi; Kiyoshi Takeda; Shizuo Akira; Koichi Yamanishi; Ichirou Kawase; Kenji Nakanishi; Tadamitsu Kishimoto

SOCS-1 is a negative regulatory molecule of the JAK-STAT signal cascade. Here, we demonstrate that SOCS-1 is a critical downregulating factor for LPS signal pathways. SOCS-1 expression was promptly induced in macrophages upon LPS stimulation. SOCS-1-deficient mice were highly sensitive to LPS-induced shock and produced increased levels of inflammatory cytokines. Introduction of SOCS-1 inhibited LPS-induced NF-kappaB and STAT1 activation in macrophages. Furthermore, LPS tolerance, a refractory state to second LPS stimulation, was not observed in SOCS-1-deficient mice. These results suggest SOCS-1 as an essential, negative regulator in LPS responses that protects the host from harmful overresponses to LPS and may provide new insight into the endotoxin-induced fatal syndrome that occasionally occurs following infection.


Hepatology | 2008

Toll-like receptors and adaptor molecules in liver disease: update.

Ekihiro Seki; David A. Brenner

Toll‐like receptors (TLRs) are pattern recognition receptors that recognize pathogen‐associated molecular patterns and signal through adaptor molecules, myeloid differentiation factor 88 (MyD88), Toll/IL‐1 receptor domain containing adaptor protein (TIRAP), Toll/IL‐1 receptor domain containing adaptor inducing interferon‐β (TRIF), and TRIF‐related adaptor molecule (TRAM) to activate transcription factors, nuclear factor (NF)‐κB, activator protein 1 (AP‐1), and interferon regulatory factors (IRFs) leading to the initiation of innate immunity. This system promptly initiates host defenses against invading microorganisms. Endogenous TLR ligands such as the products from dying cells may also engage with TLRs as damage‐associated molecular patterns. Although Kupffer cells are considered the primary cells to respond to pathogen associated molecular patterns in the liver, recent studies provide evidence of TLR signaling in hepatic nonimmune cell populations, including hepatocytes, biliary epithelial cells, endothelial cells, and hepatic stellate cells. This review highlights advances in TLR signaling in the liver, the role of TLRs in the individual hepatic cell populations, and the implication of TLR signaling in acute and chronic liver diseases. We further discuss recent advances regarding cytosolic pattern recognition receptors, RNA helicases that represents a new concept in chronic hepatitis C virus infection. (HEPATOLOGY 2008.)


Gastroenterology | 2010

Toll-Like Receptor 9 Promotes Steatohepatitis by Induction of Interleukin-1β in Mice

Kouichi Miura; Yuzo Kodama; Sayaka Inokuchi; Bernd Schnabl; Tomonori Aoyama; Hirohide Ohnishi; Jerrold M. Olefsky; David A. Brenner; Ekihiro Seki

BACKGROUND & AIMS Development of nonalcoholic steatohepatitis (NASH) involves the innate immune system and is mediated by Kupffer cells and hepatic stellate cells (HSCs). Toll-like receptor 9 (TLR9) is a pattern recognition receptor that recognizes bacteria-derived cytosine phosphate guanine (CpG)-containing DNA and activates innate immunity. We investigated the role of TLR9 signaling and the inflammatory cytokine interleukin-1beta (IL-1beta) in steatohepatitis, fibrosis, and insulin resistance. METHODS Wild-type (WT), TLR9(-/-), IL-1 receptor (IL-1R)(-/-), and MyD88(-/-) mice were fed a choline-deficient amino acid-defined (CDAA) diet for 22 weeks and then assessed for steatohepatitis, fibrosis, and insulin resistance. Lipid accumulation and cell death were assessed in isolated hepatocytes. Kupffer cells and HSCs were isolated to assess inflammatory and fibrogenic responses, respectively. RESULTS The CDAA diet induced NASH in WT mice, characterized by steatosis, inflammation, fibrosis, and insulin resistance. TLR9(-/-) mice showed less steatohepatitis and liver fibrosis than WT mice. Among inflammatory cytokines, IL-1beta production was suppressed in TLR9(-/-) mice. Kupffer cells produced IL-1beta in response to CpG oligodeoxynucleotide. IL-1beta but not CpG-oligodeoxynucleotides, increased lipid accumulation in hepatocytes. Lipid accumulation in hepatocytes led to nuclear factor-kappaB inactivation, resulting in cell death in response to IL-1beta. IL-1beta induced fibrogenic responses in HSCs, including secretion of tissue inhibitor of metalloproteinase-1. IL-1R(-/-) mice had reduced steatohepatitis and fibrosis, compared with WT mice. Mice deficient in MyD88, an adaptor molecule for TLR9 and IL-1R signaling, also had reduced steatohepatitis and fibrosis. TLR9(-/-), IL-1R(-/-), and MyD88(-/-) mice had less insulin resistance than WT mice on the CDAA diet. CONCLUSIONS In a mouse model of NASH, TLR9 signaling induces production of IL-1beta by Kupffer cells, leading to steatosis, inflammation, and fibrosis.


Journal of Clinical Investigation | 2009

CCR1 and CCR5 promote hepatic fibrosis in mice

Ekihiro Seki; Samuele De Minicis; Geum-Youn Gwak; Johannes Kluwe; Sayaka Inokuchi; Christina A. Bursill; Josep M. Llovet; David A. Brenner; Robert F. Schwabe

Hepatic fibrosis develops as a response to chronic liver injury and almost exclusively occurs in a proinflammatory environment. However, the role of inflammatory mediators in fibrogenic responses of the liver is only poorly understood. We therefore investigated the role of CC chemokines and their receptors in hepatic fibrogenesis. The CC chemokines MIP-1alpha, MIP-1beta, and RANTES and their receptors CCR1 and CCR5 were strongly upregulated in 2 experimental mouse models of fibrogenesis. Neutralization of CC chemokines by the broad-spectrum CC chemokine inhibitor 35k efficiently reduced hepatic fibrosis, and CCR1- and CCR5-deficient mice displayed substantially reduced hepatic fibrosis and macrophage infiltration. Analysis of fibrogenesis in CCR1- and CCR5-chimeric mice revealed that CCR1 mediates its profibrogenic effects in BM-derived cells, whereas CCR5 mediates its profibrogenic effects in resident liver cells. CCR5 promoted hepatic stellate cell (HSC) migration through a redox-sensitive, PI3K-dependent pathway. Both CCR5-deficient HSCs and CCR1- and CCR5-deficient Kupffer cells displayed strong suppression of CC chemokine-induced migration. Finally, we detected marked upregulation of RANTES, CCR1, and CCR5 in patients with hepatic cirrhosis, confirming activation of the CC chemokine system in human fibrogenesis. Our data therefore support a role for the CC chemokine system in hepatic fibrogenesis and suggest distinct roles for CCR1 and CCR5 in Kupffer cells and HSCs.


Journal of Immunology | 2002

Critical Roles of Myeloid Differentiation Factor 88-Dependent Proinflammatory Cytokine Release in Early Phase Clearance of Listeria monocytogenes in Mice

Ekihiro Seki; Hiroko Tsutsui; Noriko M. Tsuji; Nobuki Hayashi; Keishi Adachi; Hiroki Nakano; Shizue Futatsugi-Yumikura; Osamu Takeuchi; Katsuaki Hoshino; Shizuo Akira; Jiro Fujimoto; Kenji Nakanishi

Listeria monocytogenes (LM), a facultative intracellular Gram-positive bacterium, often causes lethal infection of the host. In this study we investigated the molecular mechanism underlying LM eradication in the early phase of infection. Upon infection with LM, both IL-12 and IL-18 were produced, and then they synergistically induced IFN-γ production, leading to normal LM clearance in the host. IFN-γ knockout (KO) mice were highly susceptible to LM infection. IL-12/IL-18 double knockout mice were also highly susceptible. Their susceptibility was less than that of IFN-γ KO mice, but more than that of single IL-12 or IL-18 KO mice. Mice deficient in myeloid differentiation factor 88 (MyD88), an essential adaptor molecule used by signal transduction pathways of all members of the Toll-like receptor (TLR) family, showed an inability to produce IL-12 and IFN-γ following LM infection and were most susceptible to LM. Furthermore, MyD88-deficient, but not IFN-γ-deficient, Kupffer cells could not produce TNF-α in response to LM in vitro, indicating the importance of MyD88-dependent TNF-α production for host defense. As TLR2 KO, but not TLR4 KO, mice showed partial impairment in their capacity to produce IL-12, IFN-γ, and TNF-α, TLR2 activation partly contributed to the induction of IL-12-mediated IFN-γ production. These results indicated a critical role for TLRs/MyD88-dependent IL-12/TNF-α production and for IL-12- and IL-18-mediated IFN-γ production in early phase clearance of LM.


Hepatology | 2009

CCR2 promotes hepatic fibrosis in mice

Ekihiro Seki; Samuele De Minicis; Sayaka Inokuchi; Kojiro Taura; Katsumi Miyai; Nico van Rooijen; Robert F. Schwabe; David A. Brenner

Chemokines and chemokine receptors contribute to the migration of hepatic stellate cells (HSCs) and Kupffer cells, two key cell types in fibrogenesis. Here, we investigate the role of CCR2, the receptor for monocyte chemoattractant protein (MCP)‐1, MCP‐2, and MCP‐3, in hepatic fibrosis. Hepatic CCR2, MCP‐1, MCP‐2, and MCP‐3 messenger RNA expression was increased after bile duct ligation (BDL). Both Kupffer cells and HSCs, but not hepatocytes, expressed CCR2. BDL‐ and CCl4‐induced fibrosis was markedly reduced in CCR2−/− mice as assessed through collagen deposition, α‐smooth muscle actin expression, and hepatic hydroxyproline content. We generated CCR2 chimeric mice by the combination of clodronate, irradiation, and bone marrow (BM) transplantation allowing full reconstitution of Kupffer cells, but not HSCs, with BM cells. Chimeric mice containing wild‐type BM displayed increased macrophage recruitment, whereas chimeric mice containing CCR2−/− BM showed less macrophage recruitment at 5 days after BDL. Although CCR2 expressed in the BM enhanced macrophage recruitment in early phases of injury, CCR2 expression on resident liver cells including HSCs, but not on the BM, was required for fibrogenic responses in chronic fibrosis models. In vitro experiments demonstrated that HSCs deficient in CCR2−/− or its downstream mediator p47phox−/− did not display extracellular signal‐regulated kinase and AKT phosphorylation, chemotaxis, or reactive oxygen species production in response to MCP‐1, MCP‐2, and MCP‐3. Conclusion: Our results indicate that CCR2 promotes HSC chemotaxis and the development of hepatic fibrosis. (HEPATOLOGY 2009.)


Gastroenterology | 2012

A Liver Full of JNK: Signaling in Regulation of Cell Function and Disease Pathogenesis, and Clinical Approaches

Ekihiro Seki; David A. Brenner; Michael Karin

c-Jun-N-terminal kinase (JNK) is a mitogen-activated protein kinase family member that is activated by diverse stimuli, including cytokines (such as tumor necrosis factor and interleukin-1), reactive oxygen species (ROS), pathogens, toxins, drugs, endoplasmic reticulum stress, free fatty acids, and metabolic changes. Upon activation, JNK induces multiple biologic events through the transcription factor activator protein-1 and transcription-independent control of effector molecules. JNK isozymes regulate cell death and survival, differentiation, proliferation, ROS accumulation, metabolism, insulin signaling, and carcinogenesis in the liver. The biologic functions of JNK are isoform, cell type, and context dependent. Recent studies using genetically engineered mice showed that loss or hyperactivation of the JNK pathway contributes to the development of inflammation, fibrosis, cancer growth, and metabolic diseases that include obesity, hepatic steatosis, and insulin resistance. We review the functions and pathways of JNK in liver physiology and pathology and discuss findings from preclinical studies with JNK inhibitors.


Journal of Immunology | 2001

Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism

Keishi Adachi; Hiroko Tsutsui; Shin-ichiro Kashiwamura; Ekihiro Seki; Hiroki Nakano; Osamu Takeuchi; Kazuyoshi Takeda; Ko Okumura; Luc Van Kaer; Haruki Okamura; Shizuo Akira; Kenji Nakanishi

Malaria, caused by infection with Plasmodium spp., is a life cycle-specific disease that includes liver injury at the erythrocyte stage of the parasite. In this study, we have investigated the mechanisms underlying Plasmodium berghei-induced liver injury, which is characterized by the presence of apoptotic and necrotic hepatocytes and dense infiltration of lymphocytes. Although both IL-12 and IL-18 serum levels were elevated after infection, IL-12-deficient, but not IL-18-deficient, mice were resistant to liver injury induced by P. berghei. Neither elevation of serum IL-12 levels nor liver injury was observed in mice deficient in myeloid differentiation factor 88 (MyD88), an adaptor molecule shared by Toll-like receptors (TLRs). These results demonstrated a requirement of the TLR-MyD88 pathway for induction of IL-12 production during P. berghei infection. Hepatic lymphocytes from P. berghei-infected wild-type mice lysed hepatocytes from both uninfected and infected mice. The hepatocytotoxic action of these cells was blocked by a perforin inhibitor but not by a neutralizing anti-Fas ligand Ab and was up-regulated by IL-12. Surprisingly, these cells killed hepatocytes in an MHC-unrestricted manner. However, CD1d-deficient mice that lack CD1d-restricted NK T cells, were susceptible to liver injury induced by P. berghei. Collectively, our results indicate that the liver injury induced by P. berghei infection of mice induces activation of the TLR-MyD88 signaling pathway which results in IL-12 production and activation of the perforin-dependent cytotoxic activities of MHC-unrestricted hepatic lymphocytes.


Hepatology | 2015

Hepatic inflammation and fibrosis: Functional links and key pathways

Ekihiro Seki; Robert F. Schwabe

Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty, and autoimmune origin. Inflammation is typically present in all disease stages and associated with the development of fibrosis, cirrhosis, and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T and B lymphocytes, natural killer cells and platelets, as well as key effectors, such as cytokines, chemokines, and damage‐associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of antifibrogenic strategies. (Hepatology 2015;61:1066–1079)

Collaboration


Dive into the Ekihiro Seki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoon Seok Roh

University of California

View shared research outputs
Top Co-Authors

Avatar

Samuele De Minicis

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Ling Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael Karin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuzo Kodama

University of California

View shared research outputs
Top Co-Authors

Avatar

Bi Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge