Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekkehard Wilichowski is active.

Publication


Featured researches published by Ekkehard Wilichowski.


Neurology | 2006

GAMT deficiency : Features, treatment, and outcome in an inborn error of creatine synthesis

Saadet Mercimek-Mahmutoglu; Sylvia Stoeckler-Ipsiroglu; A. Adami; Re Appleton; H. Caldeira Araújo; M. Duran; R. Ensenauer; E. Fernandez-Alvarez; Paula Garcia; C. Grolik; Chike B. Item; Vincenzo Leuzzi; Iris Marquardt; A. Mühl; R. A. Saelke-Kellermann; Gajja S. Salomons; Andreas Schulze; Robert Surtees; M.S. van der Knaap; R. Vasconcelos; Nanda M. Verhoeven; Laura Vilarinho; Ekkehard Wilichowski; C. Jakobs

Background: Guanidinoactetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder of creatine synthesis. The authors analyzed clinical, biochemical, and molecular findings in 27 patients. Methods: The authors collected data from questionnaires and literature reports. A score including degree of intellectual disability, epileptic seizures, and movement disorder was developed and used to classify clinical phenotype as severe, moderate, or mild. Score and biochemical data were assessed before and during treatment with oral creatine substitution alone or with additional dietary arginine restriction and ornithine supplementation. Results: Intellectual disability, epileptic seizures, guanidinoacetate accumulation in body fluids, and deficiency of brain creatine were common in all 27 patients. Twelve patients had severe, 12 patients had moderate, and three patients had mild clinical phenotype. Twenty-one of 27 (78%) patients had severe intellectual disability (estimated IQ 20 to 34). There was no obvious correlation between severity of the clinical phenotype, guanidinoacetate accumulation in body fluids, and GAMT mutations. Treatment resulted in almost normalized cerebral creatine levels, reduced guanidinoacetate accumulation, and in improvement of epilepsy and movement disorder, whereas the degree of intellectual disability remained unchanged. Conclusion: Guanidinoactetate methyltransferase deficiency should be considered in patients with unexplained intellectual disability, and urinary guanidinoacetate should be determined as an initial diagnostic approach.


Journal of Medical Genetics | 2012

Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing

Tobias B. Haack; Birgit Haberberger; Eva-Maria Frisch; Thomas Wieland; Arcangela Iuso; Matteo Gorza; Valentina Strecker; Elisabeth Graf; Johannes A. Mayr; U. Herberg; Julia B. Hennermann; Thomas Klopstock; Klaus A. Kuhn; Uwe Ahting; Wolfgang Sperl; Ekkehard Wilichowski; Georg F. Hoffmann; Marketa Tesarova; Hana Hansikova; Jiri Zeman; Barbara Plecko; Massimo Zeviani; Ilka Wittig; Tim M. Strom; Markus Schuelke; Peter Freisinger; Thomas Meitinger; Holger Prokisch

Background Next generation sequencing has become the core technology for gene discovery in rare inherited disorders. However, the interpretation of the numerous sequence variants identified remains challenging. We assessed the application of exome sequencing for diagnostics in complex I deficiency, a disease with vast genetic heterogeneity. Methods Ten unrelated individuals with complex I deficiency were selected for exome sequencing and sequential bioinformatic filtering. Cellular rescue experiments were performed to verify pathogenicity of novel disease alleles. Results The first filter criterion was ‘Presence of known pathogenic complex I deficiency variants’. This revealed homozygous mutations in NDUFS3 and ACAD9 in two individuals. A second criterion was ‘Presence of two novel potentially pathogenic variants in a structural gene of complex I’, which discovered rare variants in NDUFS8 in two unrelated individuals and in NDUFB3 in a third. Expression of wild-type cDNA in mutant cell lines rescued complex I activity and assembly, thus providing a functional validation of their pathogenicity. Using the third criterion ‘Presence of two potentially pathogenic variants in a gene encoding a mitochondrial protein’, loss-of-function mutations in MTFMT were discovered in two patients. In three patients the molecular genetic correlate remained unclear and follow-up analysis is ongoing. Conclusion Appropriate in silico filtering of exome sequencing data, coupled with functional validation of new disease alleles, is effective in rapidly identifying disease-causative variants in known and new complex I associated disease genes.


Annals of Neurology | 2002

Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency.

Knut Brockmann; Alf Bjornstad; Peter Dechent; Christoph Korenke; Jan A.M. Smeitink; J. M. Trijbels; Sabine Athanassopoulos; Rafael Villagrán; Ola H. Skjeldal; Ekkehard Wilichowski; Jens Frahm; Folker Hanefeld

A deficiency of succinate dehydrogenase is a rare cause of mitochondrial encephalomyopathy. Three patients, 2 sisters and 1 boy from an unrelated family, presented with symptoms and magnetic resonance imaging signs of leukoencephalopathy. Localized proton magnetic resonance spectroscopy indicated a prominent singlet at 2.40ppm in cerebral and cerebellar white matter not present in gray matter or basal ganglia. The signal was also elevated in cerebrospinal fluid and could be identified as originating from the two equivalent methylene groups of succinate. Subsequently, an isolated deficiency of complex II (succinate:ubiquinone oxidoreductase) was demonstrated in 2 patients in muscle and fibroblasts. One of the sisters died at the age of 18 months. Postmortem examination showed the neuropathological characteristics of Leigh syndrome. Her younger sister, now 12 months old, is also severely affected; the boy, now 6 years old, follows a milder, fluctuating clinical course. Magnetic resonance spectroscopy provides a characteristic pattern in succinate dehydrogenase deficiency.


Journal of Inherited Metabolic Disease | 2009

Aromatic l -amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up

C. Manegold; Georg F. Hoffmann; I. Degen; H. Ikonomidou; A. Knust; M. W. Laaß; M. Pritsch; Ekkehard Wilichowski; Friederike Hörster

SummaryBackgroundAromatic l-amino acid decarboxylase (AADC) deficiency is a disorder of biogenic amine metabolism resulting in generalized combined deficiency of serotonin, dopamine and catecholamines. Main clinical features are developmental delay, muscular hypotonia, dystonia, oculogyric crises and additional extraneurological symptoms. Response to therapy has been variable and unsatisfactory; the overall prognosis is guarded.MethodsTo gain more insight into this rare disorder we collected clinical and laboratory data of nine German patients. All patients were clinically examined by one investigator, and their responses to different drug regimes were evaluated by the patients’ charts.ResultsSymptoms were obvious from early infancy. Later, main neurological features were truncal muscular hypotonia, hypokinesia, oculogyric crises and rigor. Three patients had single seizures. All patients presented distinct extraneurological symptoms, such as hypersalivation, hyperhidrosis, nasal congestion, sleep disturbances and hypoglycaemia. In CSF all patients revealed the pattern typical of AADC with decreased concentrations of homovanillic and 5-hydroxyindoleacetic acid and elevated concentration of 3-ortho-methyldopa. Diagnosis was confirmed by measurement of AADC activity in plasma in all patients. Drug regimes consisted of vitamin B6, dopamine agonists, MAO inhibitors and anticholinergics in different combinations. No patient achieved a complete recovery from neurological symptoms, but partial improvement of mobility and mood could be achieved in some.ConclusionAADC deficiency is a severe neurometabolic disorder, characterized by muscular hypotonia, dystonia, oculogyric crises and additional extraneurological symptoms. Medical treatment is challenging, but a systematic trial of the different drugs is worthwhile.


Pediatric Neurology | 2003

Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies

Kiyomi Komura; Elke Hobbiebrunken; Ekkehard Wilichowski; Folker Hanefeld

The mitochondrial encephalomyopathies are chronic progressive disorders affecting predominantly the neuromuscular system. Symptoms are induced by insufficient energy supply resulting from a deficiency of oxidative phosphorylation. We studied one male and four female patients with genetically proven mitochondrial encephalomyopathy. Their ages ranged from 7 to 19 years (two with Kearns-Sayre syndrome, one patient with neuronal muscle weakness, ataxia, and retinitis pigmentosa syndrome, and two patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), using a retrospective study method. We studied the effect of creatine supplementation (0.08 g-0.35 g/kg body weight/day; 9 months to 4 years, 10 months) and measured skeletal muscle power analysis (bicycle ergometer). After creatine supplementation all patients demonstrated an increase in their maximum performance (W) (+4% - +30%; mean: +12.1%). These results indicate an improved aerobic oxidative function of mitochondria after creatine administration in patients with mitochondrial encephalomyopathies. Continuous physical exercise was improved to a greater extent than instantaneous activity.


Lancet Neurology | 2010

Treatment of Duchenne muscular dystrophy with ciclosporin A: a randomised, double-blind, placebo-controlled multicentre trial

Janbernd Kirschner; Joachim Schessl; Ulrike Schara; Bernd Reitter; Georg M. Stettner; Elke Hobbiebrunken; Ekkehard Wilichowski; Günther Bernert; Simone Weiss; Florian Stehling; Gert Wiegand; Wolfgang Müller-Felber; Simone Thiele; Ulrike Grieben; Maja von der Hagen; Jürg Lütschg; Claudia Schmoor; Gabriele Ihorst; Rudolf Korinthenberg

BACKGROUND Duchenne muscular dystrophy is a rare X-linked progressive disease characterised by loss of ambulation at about age 10 years, with death in early adulthood due to respiratory and cardiac insufficiency. Steroids are effective at slowing the progression of muscle weakness; however, their use is limited by side-effects, prompting the search for alternatives. We assessed the effect of ciclosporin A as monotherapy and in combination with intermittent prednisone for the treatment of ambulant patients with this disorder. METHODS Our study was a parallel-group, placebo-controlled, double-blind, multicentre trial at trial sites of the German muscular dystrophy network, MD-NET, over 36 months. Ambulant patients with Duchenne muscular dystrophy who were aged 5 years or older were randomly assigned to receive either ciclosporin A (3·5-4·0 mg/kg per day) or matching placebo. Allocation was done centrally with computer-generated random numbers. Patients and investigators were masked to the allocated treatment. After 3 months of treatment, both groups were also given intermittent prednisone for a further 12 months (0·75 mg/kg, alternating 10 days on with 10 days off). All patients who received at least one dose of study drug or placebo were included in the primary analysis. The primary outcome measure was manual muscle strength measured on the Medical Research Council (MRC) scale. This trial is registered with the German clinical trial register DRKS, number DRKS00000445. FINDINGS 77 patients were randomly assigned to the ciclosporin A group and 76 to the placebo group; 73 patients on ciclosporin A and 73 on placebo received at least one dose and were available for efficacy analyses. 3 months of treatment with ciclosporin A alone did not show any significant improvement in primary outcome measures (mean change in the proportion of a possible total MRC score [%MRC] was -2·6 [SD 6·0] for patients on ciclosporin A and -0·8 [4·9] for patients on placebo; adjusted group difference estimate -0·88, 97·5% CI -2·6 to 0·9; p=0·26). The combination of ciclosporin A with intermittent steroids was not better than intermittent steroids alone over 12 months (mean change in %MRC was 0·7 [7·1] for patients on ciclosporin A and -0·3 [7·9] for patients on placebo; adjusted group difference estimate -0·85, -3·6 to 1·9; p=0·48). Numbers of adverse events (75 in patients on ciclosporin A and 74 on placebo) and serious adverse events (four with ciclosporin A and four with placebo) did not differ significantly between groups. INTERPRETATION Ciclosporin A alone or in combination with intermittent prednisone does not improve muscle strength or functional abilities in ambulant boys with Duchenne muscular dystrophy, but is safe and well tolerated. FUNDING German Federal Ministry of Education and Research, Action Benni and co eV, Novartis Pharma AG, and Deutsche Gesellschaft für Muskelkranke eV.


Human Mutation | 2014

Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies.

M. Marttila; Vilma-Lotta Lehtokari; Steven B. Marston; Tuula A. Nyman; Christine Barnerias; Alan H. Beggs; Enrico Bertini; OÖzge Ceyhan-Birsoy; Pascal Cintas; Marion Gerard; Brigitte Gilbert-Dussardier; Jacob S. Hogue; Cheryl Longman; Bruno Eymard; Moshe Frydman; Peter B. Kang; Lars Klinge; Hanna Kolski; Hans Lochmüller; Laurent Magy; Véronique Manel; Michèle Mayer; Eugenio Mercuri; Kathryn N. North; Sylviane Peudenier-Robert; Helena Pihko; Frank J. Probst; Ricardo Reisin; Willie Stewart; A.L. Taratuto

Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core‐rod myopathy, congenital fiber‐type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal‐dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non‐hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head‐to‐tail binding.


Pediatric Research | 1997

Hypoparathyroidism and deafness associated with pleioplasmic large scale rearrangements of the mitochondrial DNA : A clinical and molecular genetic study of four children with Kearns-Sayre syndrome

Ekkehard Wilichowski; Annette Grüters; Klaus Kruse; Dietz Rating; Rolf Beetz; Georg Christoph Korenke; Bernd Peter Ernst; Hans-Jürgen Christen; Folker Hanefeld

In four children with hypoparathyroidism and deafness as initial major manifestations of Kearns-Sayre syndrome, a unique pattern of mitochondrial DNA rearrangements was observed. Hypocalcemic tetany caused by PTH deficiency started between age of 6-13 y and was well controlled by small amounts of 1,25-(OH)2-cholecalciferol. Rearranged mitochondrial genomes were present in blood cells of all patients and consisted of partially duplicated and deleted molecules, created by the loss of 7813, 8348, 8587, and 9485 bp, respectively. The deletions were localized between the origins of replication of heavy and light strands and encompassed at least eight polypeptide-encoding genes and six tRNA genes. Sequence analysis revealed imperfect direct repeats present in all rearrangements flanking the break-points. The duplicated population accounted for 25-53% of the mitochondrial genome and was predominant to the deleted DNA (5-30%) in all cases. The proportions of the mutant population (30-75%) correlated with the age at onset of the disease. We conclude that, unlike heteroplasmic deletions, pleioplasmic rearrangements may escape selection in rapid-dividing cells, distribute widely over many tissues, and thus cause multisystem involvement. Hypoparathyroidism and deafness might be the result of altered signaling pathway caused by selective ATP deficiency.


Laryngoscope | 2001

Progressive sensorineural hearing loss in children with mitochondrial encephalomyopathies.

Priv. Doz. Petra Zwirner; Ekkehard Wilichowski

Objective Mitochondrial disorders are responsible for a variety of neurological syndromes. Specific mitochondrial DNA mutations have been identified recently in some of these rare disorders. Clinical symptoms may occur in different organs to various extent; often they are associated with progressive hearing loss. The aims of this study were to determine incidence, onset, and characteristics of hearing loss in children with mitochondrial encephalomyopathies and to investigate a possible correlation between the degree of hearing loss and neurological symptoms. In addition, we investigated the prognostic value of hearing loss as a predictor of the disease.


American Journal of Pathology | 2009

Functional Consequences of Mitochondrial DNA Deletions in Human Skin Fibroblasts: Increased Contractile Strength in Collagen Lattices Is Due to Oxidative Stress-Induced Lysyl Oxidase Activity

Marc Majora; Tanja Wittkampf; Bianca Schuermann; Maren Schneider; Susanne Franke; Susanne Grether-Beck; Ekkehard Wilichowski; Françoise Bernerd; Peter Schroeder; Jean Krutmann

Deletions within the mitochondrial DNA (mtDNA) are thought to contribute to extrinsic skin aging. To study the translation of mtDNA deletions into functional and structural changes in the skin, we seeded human skin fibroblasts into collagen gels to generate dermal equivalents. These cells were either derived from Kearns-Sayre syndrome (KSS) patients, who constitutively carry large amounts of the UV-inducible mitochondrial common deletion, or normal human volunteers. We found that KSS fibroblasts, in comparison with normal human fibroblasts, contracted the gels faster and more strongly, an effect that was dependent on reactive oxygen species. Gene expression and Western blot analysis revealed significant upregulation of lysyl oxidase (LOX) in KSS fibroblasts. Treatment with the specific LOX inhibitor beta-aminopropionitrile decreased the contraction difference between KSS and normal human fibroblast equivalents. Also, addition of the antioxidant N-tert-butyl-alpha-phenylnitrone reduced the contraction difference by inhibiting collagen gel contraction in KSS fibroblasts, and both beta-aminopropionitrile and N-tert-butyl-alpha-phenylnitrone diminished LOX activity. These data suggest a causal relationship between mtDNA deletions, reactive oxygen species production, and increased LOX activity that leads to increased contraction of collagen gels. Accordingly, increased LOX expression was also observed in vivo in photoaged human and mouse skin. Therefore, mtDNA deletions in human fibroblasts may lead to functional and structural alterations of the skin.

Collaboration


Dive into the Ekkehard Wilichowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jutta Gärtner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Brockmann

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Sperl

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrike Schara

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Johannes A. Mayr

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Peter Freisinger

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge