Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where El-Desouky Ammar is active.

Publication


Featured researches published by El-Desouky Ammar.


Annual Review of Phytopathology | 2008

Insect Vector Interactions with Persistently Transmitted Viruses

Saskia A. Hogenhout; El-Desouky Ammar; Anna E. Whitfield; Margaret G. Redinbaugh

The majority of described plant viruses are transmitted by insects of the Hemipteroid assemblage that includes aphids, whiteflies, leafhoppers, planthoppers, and thrips. In this review we highlight progress made in research on vector interactions of the more than 200 plant viruses that are transmitted by hemipteroid insects beginning a few hours or days after acquisition and for up to the life of the insect, i.e., in a persistent-circulative or persistent-propagative mode. These plant viruses move through the insect vector, from the gut lumen into the hemolymph or other tissues and finally into the salivary glands, from which these viruses are introduced back into the plant host during insect feeding. The movement and/or replication of the viruses in the insect vectors require specific interactions between virus and vector components. Recent investigations have resulted in a better understanding of the replication sites and tissue tropism of several plant viruses that propagate in insect vectors. Furthermore, virus and insect proteins involved in overcoming transmission barriers in the vector have been identified for some virus-vector combinations.


Annual Review of Entomology | 2009

Cellular and Molecular Aspects of Rhabdovirus Interactions with Insect and Plant Hosts

El-Desouky Ammar; Chi-Wei Tsai; Anna E. Whitfield; Margaret G. Redinbaugh; Saskia A. Hogenhout

The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.


Trends in Microbiology | 2003

Plant and animal rhabdovirus host range: a bug's view

Saskia A. Hogenhout; Margaret G. Redinbaugh; El-Desouky Ammar

Rhabdoviruses affect human health, terrestrial and aquatic livestock and crops. Most rhabdoviruses are transmitted by insects to their vertebrate or plant hosts. For insect transmission to occur, rhabdoviruses must negotiate barriers to acquisition, replication, movement, escape and inoculation. A better understanding of the molecular interactions of rhabdoviruses with insects will clarify the complexities of rhabdovirus infection processes and epidemiology. A unique opportunity for studying how insects become hosts and vectors of rhabdoviruses is provided by five maize-infecting rhabdoviruses that are differentially transmitted by one or more related species of two divergent homopteran families.


Applied and Environmental Microbiology | 2008

Drosophila melanogaster Mounts a Unique Immune Response to the Rhabdovirus Sigma virus

Chi-Wei Tsai; E. A. McGraw; El-Desouky Ammar; Ralf G. Dietzgen; Saskia A. Hogenhout

ABSTRACT Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations.


Applied and Environmental Microbiology | 2012

The Bacterium Pantoea stewartii Uses Two Different Type III Secretion Systems To Colonize Its Plant Host and Insect Vector

Valdir R. Correa; Doris R. Majerczak; El-Desouky Ammar; Massimo Merighi; Richard C. Pratt; Saskia A. Hogenhout; David L. Coplin; Margaret G. Redinbaugh

ABSTRACT Plant- and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (herein referred to as P. stewartii), the causative agent of Stewarts bacterial wilt and leaf blight of maize, carries phylogenetically distinct T3SSs. In addition to an Hrc-Hrp T3SS, known to be essential for maize pathogenesis, P. stewartii has a second T3SS (Pantoea secretion island 2 [PSI-2]) that is required for persistence in its flea beetle vector, Chaetocnema pulicaria (Melsh). PSI-2 belongs to the Inv-Mxi-Spa T3SS family, typically found in animal pathogens. Mutagenesis of the PSI-2 psaN gene, which encodes an ATPase essential for secretion of T3SS effectors by the injectisome, greatly reduces both the persistence of P. stewartii in flea beetle guts and the beetles ability to transmit P. stewartii to maize. Ectopic expression of the psaN gene complements these phenotypes. In addition, the PSI-2 psaN gene is not required for P. stewartii pathogenesis of maize and is transcriptionally upregulated in insects compared to maize tissues. Thus, the Hrp and PSI-2 T3SSs play different roles in the life cycle of P. stewartii as it alternates between its insect vector and plant host.


Intervirology | 1985

Assembly and Accumulation Sites of Maize Mosaic Virus in Its Planthopper Vector

El-Desouky Ammar; L. R. Nault

The morphology, assembly, and accumulation sites of rhabdovirus particles in Peregrinus maidis planthoppers infected with a Hawaiian isolate of maize mosaic virus (MMV) were studied. These particles were usually bullet-shaped, but were sometimes bacilliform, and averaged 234 and 247 nm, respectively, in length and 60 nm in width. They were found in most acini of the principal and accessory salivary glands and in brain, nerve ganglia, leg muscle, foregut, midgut, trachea, epidermis, and fat and connective tissues. In most tissues MMV particles accumulated mainly within intracytoplasmic, dilated cisternae that were connected to the perinuclear space. However, in the salivary glands virus particles accumulated mainly in intercellular and extracellular spaces and were found in secretion vesicles. MMV particles appeared to bud from three types of membranes: (i) inner, and rarely outer, nuclear membranes of cells in most tissues examined; (ii) intracytoplasmic membranes, e.g., endoplasmic reticulum in salivary glands; and (iii) plasma membranes of salivary gland cells and nerve axons. The plasma membrane has not been reported previously as a budding site for plant rhabdoviruses, although it is known as a major assembly site for animal rhabdoviruses.


Archives of Microbiology | 2004

An attachment tip and pili-like structures in insect- and plant-pathogenic spiroplasmas of the class Mollicutes

El-Desouky Ammar; Dave Fulton; Xiaodong Bai; Tea Meulia; Saskia A. Hogenhout

Ultrastructural studies using scanning electron microscopy (SEM), negative-staining transmission electron microscopy (TEM), and thin-sectioning TEM on four species of Spiroplasma, in vitro and/or in vivo, indicated that their helices commonly possess one tapered end (tip structure) and one blunt or round end. These tip structures appeared morphologically different from the rest of the helix, exhibiting an electron-dense conical or rod-shaped core. In thin sections of the midgut of the leafhopper Dalbulus elimatus, the tip structures of Spiroplasma kunkelii in the midgut lumen were mostly aligned between microvilli, perpendicular to the apical plasma membrane of epithelial cells. These tip structures appeared frequently attached or closely apposed to the plasma membrane, in which cup-shaped invaginations close to the tips were observed. Pleomorphic forms of spiroplasma, enclosed in membranous vesicles, were found in the cytoplasm of the midgut epithelial cells. These findings suggest that the tip structure may be involved in the orientation and attachment of spiroplasma helices in relation to their host cells, and thus may be functionally comparable to the “attachment organelle” of mycoplasmas. Additionally, pili-like structures were observed by negative-staining TEM on the surface of Spiroplasma melliferum, and in thin sections of S. kunkelii infecting the leafhopper vector Dalbulus gelbus.


Phytopathology | 2010

Plant Host Range and Leafhopper Transmission of Maize fine streak virus

Jane C. Todd; El-Desouky Ammar; Margaret G. Redinbaugh; Casey W. Hoy; Saskia A. Hogenhout

Maize fine streak virus (MFSV), an emerging Rhabdovirus sp. in the genus Nucleorhabdovirus, is persistently transmitted by the black-faced leafhopper, Graminella nigrifrons (Forbes). MFSV was transmitted to maize, wheat, oat, rye, barley, foxtail, annual ryegrass, and quackgrass by G. nigrifrons. Parameters affecting efficiency of MFSV acquisition (infection) and transmission (inoculation) to maize were evaluated using single-leafhopper inoculations and enzyme-linked immunosorbent assay. MFSV was detected in ≈20% of leafhoppers that fed on infected plants but <10% of insects transmitted the virus. Nymphs became infected earlier and supported higher viral titers than adults but developmental stage at aquisition did not affect the rate of MFSV transmission. Viral titer and transmission also increased with longer post-first access to diseased periods (PADPs) (the sum of the intervals from the beginning of the acquisition access period to the end of the inoculation access period). Length of the acquisition access period was more important for virus accumulation in adults, whereas length of the interval between acquisition access and inoculation access was more important in nymphs. A threshold viral titer was needed for transmission but no transmission occurred, irrespective of titer, with a PADP of <4 weeks. MFSV was first detected by immunofluorescence confocal laser scanning microscopy at 2-week PADPs in midgut cells, hemocytes, and neural tissues; 3-week PADPs in tracheal cells; and 4-week PADPs in salivary glands, coinciding with the time of transmission to plants.


PLOS ONE | 2016

Acquisition, Replication and Inoculation of Candidatus Liberibacter asiaticus following Various Acquisition Periods on Huanglongbing-Infected Citrus by Nymphs and Adults of the Asian Citrus Psyllid.

El-Desouky Ammar; John E. Ramos; David G. Hall; William O. Dawson; Robert G. Shatters

The Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), is the primary vector of Candidatus Liberibacter asiaticus (Las) implicated as causative agent of citrus huanglongbing (citrus greening), currently the most serious citrus disease worldwide. Las is transmitted by D. citri in a persistent-circulative manner, but the question of replication of this bacterium in its psyllid vector has not been resolved. Thus, we studied the effects of the acquisition access period (AAP) by nymphs and adults of D. citri on Las acquisition, multiplication and inoculation/transmission. D. citri nymphs or adults (previously non-exposed to Las) were caged on Las-infected citrus plants for an AAP of 1, 7 or 14 days. These ‘Las-exposed’ psyllids were then transferred weekly to healthy citrus or orange jasmine plants, and sampled via quantitative polymerase chain reaction (qPCR) analysis 1–42 days post-first access to diseased plants (padp); all tested nymphs became adults 7–14 days padp. Our results indicate that following 1 or 7 day AAP as nymphs 49–59% of Las-exposed psyllids became Las-infected (qPCR-positive), whereas only 8–29% of the psyllids were infected following 1–14 day AAP as adults. Q-PCR analysis also indicated that Las titer in the Las-exposed psyllids (relative to that of the psyllid S20 ribosomal protein gene) was: 1) significantly higher, and increasing at a faster rate, following Las acquisition as nymphs compared to that following Las acquisition as adults; 2) higher as post-acquisition time of psyllids on healthy plants increased reaching a peak at 14–28 days padp for nymphs and 21–35 days padp for adults, with Las titer decreasing or fluctuating after that; 3) higher with longer AAP on infected plants, especially with acquisition as adults. Our results strongly suggest that Las multiplies in both nymphs and adults of D. citri but attains much higher levels in a shorter period of time post-acquisition when acquired by nymphs than when acquired by adults, and that adults may require longer access to infected plants compared to nymphs for Las to reach higher levels in the vector. However, under the conditions of our experiments, only D. citri that had access to infected plants as nymphs were able to inoculate Las into healthy citrus seedlings or excised leaves. The higher probability of Las inoculation into citrus by psyllids when they have acquired this bacterium from infected plants during the nymphal rather than the adult stage, as reported by us and others, has significant implications in the epidemiology and control of this economically important citrus disease.


Archives of Virology | 2009

Large accumulations of maize streak virus in the filter chamber and midgut cells of the leafhopper vector Cicadulina mbila

El-Desouky Ammar; Daniel Gargani; Jean-Michel Lett; Michel Peterschmitt

Maize streak virus (MSV, Mastrevirus,Geminiviridae) is persistently transmitted by Cicadulina mbila, apparently without propagation in its leafhopper vector. MSV was shown earlier by quantitative PCR to accumulate in the alimentary canal of C. mbila. We examined the alimentary canals of C. mbila leafhoppers that acquired MSV from diseased plants for various acquisition access periods (AAP) by immunofluorescence confocal laser scanning microscopy (iCLSM) and by immunogold labelling transmission electron microscopy (iTEM). Following a 7-day AAP and a 7-day inoculation period (IP) on healthy seedlings, MSV was detected by iCLSM mainly in the filter chamber and anterior midgut. Using iTEM, large accumulations of MSV particles, usually enclosed in membranous vesicles, were detected only in cells of the midgut, inside and outside the filter chamber, following 14- or 30-day AAPs, and also following 7-day AAP and 7-day IP on healthy plants. No virus was detected in the control non-vector species C. chinaï. Coated pits or vesicles, typical of clathrin-mediated endocytosis, were not observed. We discuss an alternative endocytosis pathway and suggest that the MSV accumulations are stored in endosomes in the midgut epithelial cells.

Collaboration


Dive into the El-Desouky Ammar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Hall

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Shatters

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Valdir R. Correa

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge