Elad Gross
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elad Gross.
Nature | 2012
Pazhamalai Anbarasan; Zachary C. Baer; Sanil Sreekumar; Elad Gross; Joseph B. Binder; Harvey W. Blanch; Douglas S. Clark; F. Dean Toste
Nearly one hundred years ago, the fermentative production of acetone by Clostridium acetobutylicum provided a crucial alternative source of this solvent for manufacture of the explosive cordite. Today there is a resurgence of interest in solventogenic Clostridium species to produce n-butanol and ethanol for use as renewable alternative transportation fuels. Acetone, a product of acetone–n-butanol–ethanol (ABE) fermentation, harbours a nucleophilic α-carbon, which is amenable to C–C bond formation with the electrophilic alcohols produced in ABE fermentation. This functionality can be used to form higher-molecular-mass hydrocarbons similar to those found in current jet and diesel fuels. Here we describe the integration of biological and chemocatalytic routes to convert ABE fermentation products efficiently into ketones by a palladium-catalysed alkylation. Tuning of the reaction conditions permits the production of either petrol or jet and diesel precursors. Glyceryl tributyrate was used for the in situ selective extraction of both acetone and alcohols to enable the simple integration of ABE fermentation and chemical catalysis, while reducing the energy demand of the overall process. This process provides a means to selectively produce petrol, jet and diesel blend stocks from lignocellulosic and cane sugars at yields near their theoretical maxima.
Nature Chemistry | 2012
Elad Gross; Jack Hung-Chang Liu; F. Dean Toste; Gabor A. Somorjai
A combination of the advantages of homogeneous and heterogeneous catalysis could enable the development of sustainable catalysts with novel reactivity and selectivity. Although heterogeneous catalysts are often recycled more easily than their homogeneous counterparts, they can be difficult to apply in traditional organic reactions and modification of their properties towards a desired reactivity is, at best, complex. In contrast, tuning the properties of homogeneous catalysts by, for example, modifying the ligands that coordinate a metal centre is better understood. Here, using olefin cyclopropanation reactions catalysed by dendrimer-encapsulated Au nanoclusters as examples, we demonstrate that changing the dendrimer properties allows the catalytic reactivity to be tuned in a similar fashion to ligand modification in a homogeneous catalyst. Furthermore, we show that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enables the control over product distribution in a way that is not easily available for homogeneous catalysts. Heterogeneous catalysts are generally more readily recycled than homogeneous catalysts, but the latter are more easily modified to tune reactivity and selectivity. Here, the dendrimer coating of gold nanoparticle catalysts is shown to be a surrogate for the ligands of homogeneous catalysts. Tuning of product distribution and reaction selectivity is possible when these catalysts are employed in a fixed-bed flow reactor.
Journal of the American Chemical Society | 2013
Elad Gross; Jack Hung-Chang Liu; Selim Alayoglu; Matthew A. Marcus; Sirine C. Fakra; F. Dean Toste; Gabor A. Somorjai
Research to develop highly versatile, chiral, heterogeneous catalysts for asymmetric organic transformations, without quenching the catalytic reactivity, has met with limited success. While chiral supramolecular structures, connected by weak bonds, are highly active for homogeneous asymmetric catalysis, their application in heterogeneous catalysis is rare. In this work, asymmetric catalyst was prepared by encapsulating metallic nanoclusters in chiral self-assembled monolayer (SAM), immobilized on mesoporous SiO2 support. Using olefin cyclopropanation as an example, it was demonstrated that by controlling the SAM properties, asymmetric reactions can be catalyzed by Au clusters embedded in chiral SAM. Up to 50% enantioselectivity with high diastereoselectivity were obtained while employing Au nanoclusters coated with SAM peptides as heterogeneous catalyst for the formation of cyclopropane-containing products. Spectroscopic measurements correlated the improved enantioselectivity with the formation of a hydrogen-bonding network in the chiral SAM. These results demonstrate the synergetic effect of the catalytically active metallic sites and the surrounding chiral SAM for the formation of a mesoscale enantioselective catalyst.
Journal of the American Chemical Society | 2011
Yimin Li; Jack Hung-Chang Liu; Cole A. Witham; Wenyu Huang; Matthew A. Marcus; Sirine C. Fakra; Pinar Alayoglu; Zhongwei Zhu; Christopher Thompson; Arpana Arjun; Kihong Lee; Elad Gross; F. Dean Toste; Gabor A. Somorjai
The design and development of metal-cluster-based heterogeneous catalysts with high activity, selectivity, and stability under solution-phase reaction conditions will enable their applications as recyclable catalysts in large-scale fine chemicals production. To achieve these required catalytic properties, a heterogeneous catalyst must contain specific catalytically active species in high concentration, and the active species must be stabilized on a solid catalyst support under solution-phase reaction conditions. These requirements pose a great challenge for catalysis research to design metal-cluster-based catalysts for solution-phase catalytic processes. Here, we focus on a silica-supported, polymer-encapsulated Pt catalyst for an electrophilic hydroalkoxylation reaction in toluene, which exhibits superior selectivity and stability against leaching under mild reaction conditions. We unveil the key factors leading to the observed superior catalytic performance by combining X-ray absorption spectroscopy (XAS) and reaction kinetic studies. On the basis of the mechanistic understandings obtained in this work, we also provide useful guidelines for designing metal-cluster-based catalyst for a broader range of reactions in the solution phase.
Journal of the American Chemical Society | 2014
Elad Gross; Xing-Zhong Shu; Selim Alayoglu; Hans A. Bechtel; Michael C. Martin; F. Dean Toste; Gabor A. Somorjai
Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 μm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.
Chemsuschem | 2014
Sanil Sreekumar; Zachary C. Baer; Elad Gross; Sasisanker Padmanaban; Konstantinos A. Goulas; Gorkem Gunbas; Selim Alayoglu; Harvey W. Blanch; Douglas S. Clark; F. Dean Toste
Biological and chemocatalytic processes are tailored in order to maximize the production of sustainable biodiesel from lignocellulosic sugar. Thus, the combination of hydrotalcite-supported copper(II) and palladium(0) catalysts with a modification of the fermentation from acetone-butanol-ethanol to isopropanol-butanol-ethanol predictably produces higher concentrations of diesel-range components in the alkylation reaction.
Nature | 2017
Chung-Yeh Wu; William J. Wolf; Yehonatan Levartovsky; Hans A. Bechtel; Michael C. Martin; F. Dean Toste; Elad Gross
The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles—which contain metal atoms with low coordination numbers—are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.
Topics in Catalysis | 2013
Elad Gross; Gabor A. Somorjai
The catalytic reactivity and selectivity of metallic nanoclusters supported on a metal-oxide can be tuned by electronic charge. In this review, different approaches for controlling the electronic properties of metallic nanoclusters and its impact on catalytic reactions are discussed. Electronic charge can transfer from the metal-oxide support to the metallic catalyst and change the metal–reactants interaction and as a consequence modify as-well the catalytic reactivity and selectivity. In other cases, the electronic properties of the metal-oxide have an active role in the catalytic process and the metal oxide can be used as a co-catalyst. Another approach is to directly change the electronic properties of the metallic catalyst. It is demonstrated that dendrimer-encapsulated metallic nanoparticles can be directly oxidized by the addition of an inorganic oxidizer to the solution phase. In this case, even while supported on inert oxides, novel catalytic reactivity and selectivity can be gained by the formation of highly oxidized metal ions.
Nano Letters | 2016
Muhan Cao; Zeyuan Tang; Qipeng Liu; Yong Xu; Min Chen; Haiping Lin; Youyong Li; Elad Gross; Qiao Zhang
The demand for catalyst with higher activity and higher selectivity is still a central issue in current material science community. On the basis of first-principles calculations, we demonstrate that the catalytic performance of the Pd-TiO2 hybrid nanostructures can be selectively promoted or depressed by choosing the suitable shaped Pd and TiO2 nanocrystals. To be more specific, the catalytic activities of Pd nanoparticles enclosed by (100) or (111) facets can be promoted more significantly when dosed on the TiO2(001) than on TiO2(101) under irradiation. Such theoretical prediction has then been further verified by the experimental observations in which the Pd(100)-TiO2(001) composites exhibit the highest catalytic performance toward the activation of oxygen among all the other shaped hybrid nanostructures. As a result, the selection of facets of support materials can provide an extra tuning parameter to control the catalytic activities of metal nanoparticles. This research opened up a new direction for designing and preparing catalysts with enhanced catalytic performance.
Langmuir | 2010
Elad Gross; Micha Asscher
The effect of composition and morphology of bimetallic Pd-Au nanoclusters on their chemical reactivity has been studied with acetylene decomposition and conversion to ethylene and benzene as the chemical probe. High resolution transmission electron microscopy (HR-TEM) and CO-Temperature Programmed Desorption (TPD) measurements were employed for structure and chemical composition determination. Pd-Au clusters were prepared in ultrahigh vacuum (UHV) environment on SiO(2)/Si(100) by direct deposition (DD) to form 2D bimetallic nanostructures. Different bimetallic cluster morphology could be obtained by employing the buffer layer assisted growth (BLAG) procedure with amorphous solid water as buffer material. The BLAG bimetallic clusters were found to be more reactive than DD particles toward acetylene hydrogenation to ethylene and trimerization to benzene. The morphology and composition of DD clusters enabled the formation of both tilted (low adsorption energy) and flat laying (high adsorption energy) benzene, while mainly tilted benzene was detected upon adsorption of acetylene on BLAG clusters. Moreover, the reactivity of bimetallic clusters was compared to that of thin Pd film. Strong preference (100:1 ratio) toward acetylene hydrogenation to ethylene over trimerization to benzene has been correlated with the lack of extended Pd(111) facets on the bimetallic clusters that suppress the benzene formation.