Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elad L. Laviad is active.

Publication


Featured researches published by Elad L. Laviad.


Journal of Biological Chemistry | 2008

Characterization of Ceramide Synthase 2 TISSUE DISTRIBUTION, SUBSTRATE SPECIFICITY, AND INHIBITION BY SPHINGOSINE 1-PHOSPHATE

Elad L. Laviad; Lee Albee; Irene Pankova-Kholmyansky; Sharon Epstein; Hyejung Park; Alfred H. Merrill; Anthony H. Futerman

Ceramide is an important lipid signaling molecule and a key intermediate in sphingolipid biosynthesis. Recent studies have implied a previously unappreciated role for the ceramide N-acyl chain length, inasmuch as ceramides containing specific fatty acids appear to play defined roles in cell physiology. The discovery of a family of mammalian ceramide synthases (CerS), each of which utilizes a restricted subset of acyl-CoAs for ceramide synthesis, strengthens this notion. We now report the characterization of mammalian CerS2. qPCR analysis reveals that CerS2 mRNA is found at the highest level of all CerS and has the broadest tissue distribution. CerS2 has a remarkable acyl-CoA specificity, showing no activity using C16:0-CoA and very low activity using C18:0, rather utilizing longer acyl-chain CoAs (C20–C26) for ceramide synthesis. There is a good correlation between CerS2 mRNA levels and levels of ceramide and sphingomyelin containing long acyl chains, at least in tissues where CerS2 mRNA is expressed at high levels. Interestingly, the activity of CerS2 can be regulated by another bioactive sphingolipid, sphingosine 1-phosphate (S1P), via interaction of S1P with two residues that are part of an S1P receptor-like motif found only in CerS2. These findings provide insight into the biochemical basis for the ceramide N-acyl chain composition of cells, and also reveal a novel and potentially important interplay between two bioactive sphingolipids that could be relevant to the regulation of sphingolipid metabolism and the opposing functions that these lipids play in signaling pathways.


Journal of Biological Chemistry | 2010

A Critical Role for Ceramide Synthase 2 in Liver Homeostasis I. ALTERATIONS IN LIPID METABOLIC PATHWAYS

Yael Pewzner-Jung; Hyejung Park; Elad L. Laviad; Liana C. Silva; Sujoy Lahiri; Johnny Stiban; Racheli Erez-Roman; Britta Brügger; Timo Sachsenheimer; Felix T. Wieland; Manuel Prieto; Alfred H. Merrill; Anthony H. Futerman

Ceramide is an important lipid signaling molecule that plays critical roles in regulating cell behavior. Ceramide synthesis is surprisingly complex and is orchestrated by six mammalian ceramide synthases, each of which produces ceramides with restricted acyl chain lengths. We have generated a CerS2 null mouse and characterized the changes in the long chain base and sphingolipid composition of livers from these mice. Ceramide and downstream sphingolipids were devoid of very long (C22–C24) acyl chains, consistent with the substrate specificity of CerS2 toward acyl-CoAs. Unexpectedly, C16-ceramide levels were elevated, and as a result, total ceramide levels were unaltered; however, C16-ceramide synthesis in vitro was not increased. Levels of sphinganine were also significantly elevated, by up to 50-fold, reminiscent of the effect of the ceramide synthase inhibitor, fumonisin B1. With the exceptions of glucosylceramide synthase and neutral sphingomyelinase 2, none of the other enzymes tested in either the sphingolipid biosynthetic or degradative pathways were significantly changed. Total glycerophospholipid and cholesterol levels were unaltered, although there was a marked elevation in C18:1 and C18:2 fatty acids in phosphatidylethanolamine, concomitant with a reduction in C18:0 and C20:4 fatty acids. Finally, differences were observed in the biophysical properties of lipid extracts isolated from liver microsomes, with membranes from CerS2 null mice displaying higher membrane fluidity and showing morphological changes. Together, these results demonstrate novel modes of cross-talk and regulation between the various branches of lipid metabolic pathways upon inhibition of very long acyl chain ceramide synthesis.


Journal of Biological Chemistry | 2010

A Critical Role for Ceramide Synthase 2 in Liver Homeostasis II. INSIGHTS INTO MOLECULAR CHANGES LEADING TO HEPATOPATHY

Yael Pewzner-Jung; Ori Brenner; Svantje Braun; Elad L. Laviad; Shifra Ben-Dor; Ester Feldmesser; Shirley Horn-Saban; Daniela Amann-Zalcenstein; Calanit Raanan; Tamara Berkutzki; Racheli Erez-Roman; Oshrit Ben-David; Michal Levy; Dorin Holzman; Hyejung Park; Abraham Nyska; Alfred H. Merrill; Anthony H. Futerman

We have generated a mouse that cannot synthesize very long acyl chain (C22–C24) ceramides (Pewzner-Jung, Y., Park, H., Laviad, E. L., Silva, L. C., Lahiri, S., Stiban, J., Erez-Roman, R., Brugger, B., Sachsenheimer, T., Wieland, F. T., Prieto, M., Merrill, A. H., and Futerman, A. H. (2010) J. Biol. Chem. 285, 10902–10910) due to ablation of ceramide synthase 2 (CerS2). As a result, significant changes were observed in the sphingolipid profile of livers from these mice, including elevated C16-ceramide and sphinganine levels. We now examine the functional consequences of these changes. CerS2 null mice develop severe nonzonal hepatopathy from about 30 days of age, the age at which CerS2 expression peaks in wild type mice, and display increased rates of hepatocyte apoptosis and proliferation. In older mice there is extensive and pronounced hepatocellular anisocytosis with widespread formation of nodules of regenerative hepatocellular hyperplasia. Progressive hepatomegaly and noninvasive hepatocellular carcinoma are also seen from ∼10 months of age. Even though CerS2 is found at equally high mRNA levels in kidney and liver, there are no changes in renal function and no pathological changes in the kidney. High throughput analysis of RNA expression in liver revealed up-regulation of genes associated with cell cycle regulation, protein transport, cell-cell interactions and apoptosis, and down-regulation of genes associated with intermediary metabolism, such as lipid and steroid metabolism, adipocyte signaling, and amino acid metabolism. In addition, levels of the cell cycle regulator, the cyclin dependent-kinase inhibitor p21WAF1/CIP1, were highly elevated, which occurs by at least two mechanisms, one of which may involve p53. We propose a functional rationale for the synthesis of sphingolipids with very long acyl chains in liver homeostasis and in cell physiology.


Journal of Biological Chemistry | 2009

Ceramide Synthesis Is Modulated by the Sphingosine Analog FTY720 via a Mixture of Uncompetitive and Noncompetitive Inhibition in an Acyl-CoA Chain Length-dependent Manner

Sujoy Lahiri; Hyejung Park; Elad L. Laviad; Xuequan Lu; Robert Bittman; Anthony H. Futerman

FTY720, a sphingosine analog, is in clinical trials as an immunomodulator. The biological effects of FTY720 are believed to occur after its metabolism to FTY720 phosphate. However, very little is known about whether FTY720 can interact with and modulate the activity of other enzymes of sphingolipid metabolism. We examined the ability of FTY720 to modulate de novo ceramide synthesis. In mammals, ceramide is synthesized by a family of six ceramide synthases, each of which utilizes a restricted subset of acyl-CoAs. We show that FTY720 inhibits ceramide synthase activity in vitro by noncompetitive inhibition toward acyl-CoA and uncompetitive inhibition toward sphinganine; surprisingly, the efficacy of inhibition depends on the acyl-CoA chain length. In cultured cells, FTY720 has a more complex effect, with ceramide synthesis inhibited at high (500 nm to 5 μm) but not low (<200 nm) sphinganine concentrations, consistent with FTY720 acting as an uncompetitive inhibitor toward sphinganine. Finally, electrospray ionization-tandem mass spectrometry demonstrated, unexpectedly, elevated levels of ceramide, sphingomyelin, and hexosylceramides after incubation with FTY720. Our data suggest a novel mechanism by which FTY720 might mediate some of its biological effects, which may be of mechanistic significance for understanding its mode of action.


Journal of Biological Chemistry | 2012

Modulation of ceramide synthase activity via dimerization

Elad L. Laviad; Samuel Kelly; Alfred H. Merrill; Anthony H. Futerman

Background: Ceramide is synthesized by a family of six ceramide synthases (CerS), which use different acyl-CoAs for N-acylation of the sphingoid base. Results: CerS form homo- and heterodimers, which regulate ceramide synthesis. Conclusion: CerS activity is modulated by dimer formation. Significance: The acyl chain composition of ceramide in different tissues may depend on interaction between different CerS. Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS) that each use acyl-CoAs of defined chain length for N-acylation of the sphingoid long chain base. CerS mRNA expression and enzymatic activity do not always correlate with the sphingolipid acyl chain composition of a particular tissue, suggesting post-translational mechanism(s) of regulation of CerS activity. We now demonstrate that CerS activity can be modulated by dimer formation. Under suitable conditions, high Mr CerS complexes can be detected by Western blotting, and various CerS co-immunoprecipitate. CerS5 activity is inhibited in a dominant-negative fashion by co-expression with catalytically inactive CerS5, and CerS2 activity is enhanced by co-expression with a catalytically active form of CerS5 or CerS6. In a constitutive heterodimer comprising CerS5 and CerS2, the activity of CerS2 depends on the catalytic activity of CerS5. Finally, CerS dimers are formed upon rapid stimulation of ceramide synthesis by curcumin. Together, these data demonstrate that ceramide synthesis can be regulated by the formation of CerS dimers and suggest a novel way to generate the acyl chain composition of ceramide (and downstream sphingolipids), which may depend on the interaction of CerS with each other.


Journal of Biological Chemistry | 2011

Encephalopathy Caused by Ablation of Very Long Acyl Chain Ceramide Synthesis May Be Largely Due to Reduced Galactosylceramide Levels

Oshrit Ben-David; Yael Pewzner-Jung; Ori Brenner; Elad L. Laviad; Aviram Kogot-Levin; Itai Weissberg; Inbal E. Biton; Reut Pienik; Elaine Wang; Samuel Kelly; Joseph Alroy; Annick Raas-Rothschild; Alon Friedman; Britta Brügger; Alfred H. Merrill; Anthony H. Futerman

Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22–C24) chain SLs. This mouse, which is defective in the ability to synthesize C22–C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22–C24-GalCer and 2-hydroxy-C22–C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22–C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.


Journal of Lipid Research | 2012

Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes

Liana C. Silva; Oshrit Ben David; Yael Pewzner-Jung; Elad L. Laviad; Johnny Stiban; Sibali Bandyopadhyay; Alfred H. Merrill; Manuel Prieto; Anthony H. Futerman

Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22–C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.


Journal of Biological Chemistry | 2007

A New Functional Motif in Hox Domain-containing Ceramide Synthases IDENTIFICATION OF A NOVEL REGION FLANKING THE Hox AND TLC DOMAINS ESSENTIAL FOR ACTIVITY

Adi Mesika; Shifra Ben-Dor; Elad L. Laviad; Anthony H. Futerman

Ceramide is synthesized in mammals by a family of ceramide synthases (CerS) each of which uses a relatively restricted set of fatty acyl-CoAs for N-acylation of the sphingoid long chain base (Pewzner-Jung, Y., Ben-Dor, S., and Futerman, A. H. (2006) J. Biol. Chem. 281, 25001-25005). CerS are characterized by two functional domains, the Tram-Lag-CLN8 (TLC) domain and the homeobox (Hox) domain, which is found in all mammalian CerS except CerS1. We now demonstrate that the majority of the Hox domain is not required for CerS activity since its deletion in CerS5 does not affect activity. Subsequently, we define a highly conserved new motif of 12 amino acid residues that flanks the Hox and TLC domains but is not part of the TLC domain, which is essential for CerS5 and CerS6 activity. Two positively charged residues in this domain, one of which is conserved in all putative CerS in all organisms, are essential for activity since site-directed mutagenesis of either (Lys-134 and Lys-140 in CerS5) results in an ∼50% loss of activity, whereas mutation of both leads to a complete loss of activity. Because this region is conserved across species, we propose that it plays a previously unidentified and essential role in CerS activity and can be used as a new motif to define Hox domain-containing CerS.


Biochimica et Biophysica Acta | 2009

CERAMIDE SYNTHASE 1 IS REGULATED BY PROTEASOMAL MEDIATED TURNOVER

Priya Sridevi; Hannah Alexander; Elad L. Laviad; Yael Pewzner-Jung; Mark Hannink; Anthony H. Futerman; Stephen Alexander

Ceramide is an important bioactive lipid, intimately involved in many cellular functions, including the regulation of cell death, and in cancer and chemotherapy. Ceramide is synthesized de novo from sphinganine and acyl CoA via a family of 6 ceramide synthase enzymes, each having a unique preference for different fatty acyl CoA substrates and a unique tissue distribution. However, little is known regarding the regulation of these important enzymes. In this study we focus on ceramide synthase 1 (CerS1) which is the most structurally and functionally distinct of the enzymes, and describe a regulatory mechanism that specifically controls the level of CerS1 via ubiquitination and proteasome dependent protein turnover. We show that both endogenous and ectopically expressed CerS1 have rapid basal turnover and that diverse stresses including chemotherapeutic drugs, UV light and DTT can induce CerS1 turnover. The turnover requires CerS1 activity and is regulated by the opposing actions of p38 MAP kinase and protein kinase C (PKC). p38 MAP kinase is a positive regulator of turnover, while PKC is a negative regulator of turnover. CerS1 is phosphorylated in vivo and activation of PKC increases the phosphorylation of the protein. This study reveals a novel and highly specific mechanism by which CerS1 protein levels are regulated and which directly impacts ceramide homeostasis.


PLOS ONE | 2013

Ceramide Synthases Expression and Role of Ceramide Synthase-2 in the Lung: Insight from Human Lung Cells and Mouse Models

Irina Petrache; Krzysztof Kamocki; Christophe Poirier; Yael Pewzner-Jung; Elad L. Laviad; Kelly S. Schweitzer; Mary Van Demark; Matthew J. Justice; Walter C. Hubbard; Anthony H. Futerman

Increases in ceramide levels have been implicated in the pathogenesis of both acute or chronic lung injury models. However, the role of individual ceramide species, or of the enzymes that are responsible for their synthesis, in lung health and disease has not been clarified. We now show that C24- and C16-ceramides are the most abundant lung ceramide species, paralleled by high expression of their synthetic enzymes, ceramide synthase 2 (CerS2) and CerS5, respectively. Furthermore, the ceramide species synthesis in the lung is homeostatically regulated, since mice lacking very long acyl chain C24-ceramides due to genetic deficiency of CerS2 displayed a ten-fold increase in C16-ceramides and C16-dihydroceramides along with elevation of acid sphingomyelinase and CerS5 activities. Despite relatively preserved total lung ceramide levels, inhibition of de novo sphingolipid synthesis at the level of CerS2 was associated with significant airflow obstruction, airway inflammation, and increased lung volumes. Our results suggest that ceramide species homeostasis is crucial for lung health and that CerS2 dysfunction may predispose to inflammatory airway and airspace diseases.

Collaboration


Dive into the Elad L. Laviad's collaboration.

Top Co-Authors

Avatar

Anthony H. Futerman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alfred H. Merrill

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yael Pewzner-Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hyejung Park

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Kelly

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Racheli Erez-Roman

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge